Читаем Автостопом по Python полностью

Когда подводный камень вовсе не подводный камень. Иногда вы можете намеренно задействовать (то есть использовать в качестве нормального варианта поведения) этот подводный камень, чтобы сохранять состояние между вызовами функции. Зачастую это делается при написании функции кэширования (которая сохраняет результаты в памяти), например: def time_consuming_function(x, y, cache={}):

args = (x, y)

if args in cache:

return cache[args]

# В противном случае функция работает с аргументами в первый раз.

# Выполняем сложную операцию...

cache[args] = result

return result

Замыкания с поздним связыванием

Еще один распространенный источник путаницы — способ связывания переменных в замыканиях (или в окружающей глобальной области видимости).

Что вы написали:

def create_multipliers():

return [lambda x : i * x for i in range(5)]

Чего вы ожидаете:

for multiplier in create_multipliers():

print(multiplier(2), end=" ... ")

print()

Список, содержащий пять функций, каждая из них имеет собственную замкнутую переменную i, которая умножается на их аргумент, что приводит к получению следующего результата: 0 ... 2 ... 4 ... 6 ... 8 ...

Что происходит на самом деле:

8 ... 8 ... 8 ... 8 ... 8 ...

Создаются пять функций, все они умножают х на 4. Почему? В Python замыкания имеют позднее связывание. Это говорит о том, что значения переменных, использованных в замыканиях, определяются в момент вызова внутренней функции.

В нашем примере, когда вызывается любая из возвращенных функций, значение переменной i определяется с помощью окружающей области видимости в момент вызова. К этому моменту цикл завершает свою работу и i получает итоговое значение 4.

Особенно неудобно то, что вам может показаться, будто ошибка как-то связана с лямбда-выражениями (https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions). Функции, создаваемые с помощью лямбда-выражений, не отличаются от других. Фактически то же самое поведение проявляется и при использовании самого обычного def: def create_multipliers():

multipliers = []

for i in range(5):

def multiplier(x):

return i * x

multipliers.append(multiplier)

return multipliers

Что вам нужно сделать вместо этого? Наиболее общее решение, возможно, станет «костылем» — временным вариантом устранения проблемы. Из-за уже упомянутого поведения Python, связанного с определением аргументов по умолчанию для функций (см. предыдущий пункт «Изменяемые аргументы функций»), вы можете создать замыкание, которое немедленно связывается со своими аргументами с помощью аргумента по умолчанию: def create_multipliers():

return [lambda x, i=i : i * x for i in range(5)]

Помимо этого вы можете использовать функцию functools.partial():

from functools import partial

from operator import mul

def create_multipliers():

return [partial(mul, i) for i in range(5)]

Когда подводный камень вовсе не подводный камень. Иногда нужно, чтобы замыкания вели себя подобным образом. Позднее связывание может быть полезным во многих ситуациях (например, в проекте Diamond, см. пункт «Пример использования замыкания (когда подводный камень вовсе не подводный камень)» на с. 136). Наличие уникальных функций в циклах, к сожалению, может привести к сбоям.

Структурируем проект

Под структурированием мы понимаем решения, которые вы принимаете по поводу функционирования вашего проекта. Его цель состоит в использовании возможностей Python для создания чистого и эффективного кода. На практике это означает, что логика и зависимости в коде и структуре файлов и каталогов прозрачны.

По какому принципу функции должны размещаться в модулях? Как данные перемещаются по проекту? Какие функции могут быть сгруппированы и изолированы? Отвечая на эти вопросы, вы можете запланировать, как будет выглядеть ваш конечный продукт.

В книге Python Cookbook есть глава, посвященная модулям и пакетам (http://bit.ly/python-cookbook-ch10), в которой подробно описывается, как работают выражения __import__ и упаковка. Цель этого раздела — осветить основные аспекты системы модулей и импортирования Python, необходимые для структурирования ваших проектов. Далее мы рассмотрим разные подходы к сборке кода, который легко будет расширять и тестировать.

Благодаря тому, как в Python налажен процесс импортирования и разбиения на модули, структурировать проект довольно просто: существует всего несколько ограничений, модель для импортирования также нетрудно освоить. Поэтому перед вами стоит исключительно архитектурная задача — создать различные части проекта и продумать их взаимодействие.

Модули

Модуль — это один из основных уровней абстракции в Python. Уровни абстракции позволяют программисту разбивать код на части, которые содержат связанные данные и функциональность.

Перейти на страницу:

Похожие книги

100 знаменитых харьковчан
100 знаменитых харьковчан

Дмитрий Багалей и Александр Ахиезер, Николай Барабашов и Василий Каразин, Клавдия Шульженко и Ирина Бугримова, Людмила Гурченко и Любовь Малая, Владимир Крайнев и Антон Макаренко… Что объединяет этих людей — столь разных по роду деятельности, живущих в разные годы и в разных городах? Один факт — они так или иначе связаны с Харьковом.Выстраивать героев этой книги по принципу «кто знаменитее» — просто абсурдно. Главное — они любили и любят свой город и прославили его своими делами. Надеемся, что эти сто биографий помогут читателю почувствовать ритм жизни этого города, узнать больше о его истории, просто понять его. Тем более что в книгу вошли и очерки о харьковчанах, имена которых сейчас на слуху у всех горожан, — об Арсене Авакове, Владимире Шумилкине, Александре Фельдмане. Эти люди создают сегодняшнюю историю Харькова.Как знать, возможно, прочитав эту книгу, кто-то испытает чувство гордости за своих знаменитых земляков и посмотрит на Харьков другими глазами.

Владислав Леонидович Карнацевич

Неотсортированное / Энциклопедии / Словари и Энциклопедии