Читаем Диалоги о математике полностью

Сократ. Мне кажется, мы все еще не нашли ответа на твой вопрос. Мы оба, вероятно, теперь лучше понимаем, что такое собственно математика. Но на вопрос о смысле и цели математики, этого океана человеческих мыслей, мы еще не ответили.

Гиппократ. Ты прав. Я убедился, что при изучении математики приобретаешь надежные основополагающие знания. Когда я погружусь в этот чудесный мир, ко мне, наверное, придет то прекрасное чувство, которого до сих пор я не находил: есть истина, которая не оставляет место сомнению. Я понял, что мир математики существует в действительности и независимо от меня, пусть не в том роде, как камни и деревья, но тем не менее он существует. К чему, собственно, исследовать этот мир? Может быть, на этот раз ты отложишь в сторону свой метод и попросту ответишь на мой вопрос? Боюсь, что сам я не способен найти разумный ответ.

Сократ. Нет, мой друг, если бы даже я смог, я бы не сделал этого, и только ради твоей же пользы. Знания, получаемые без труда, ничего не стоят. До конца мы понимаем только то — возможно, с помощью извне, — что узнаем сами, подобно тому как растение может использовать только ту воду, которую оно высасывает из почвы собственными корнями.

Гиппократ. Хорошо. Продолжим наши поиски тем же методом, но помоги мне вопросом.

Сократ. Теперь я вижу, дорогой Гиппократ, что мы должны вернуться назад, если хотим продвинуться вперед.

Гиппократ. Как далеко нам следует вернуться?

Сократ. Я думаю, мы должны вернуться к тому моменту, когда мы установили, что математик имеет дело не с числом овец, кораблей или других реальных вещей, а с числами как таковыми. Me думаешь ли ты, однако, что математическое открытие, верное для простых чисел, справедливо также и для чисел реальных предметов? Например, математик определяет, что 17 — это простое число. А разве не правда, что ты не можешь 17 живых овец равномерно распределить между людьми, если их не 17 человек?

Гиппократ. Конечно, это правда.

Сократ. Значит, то, что математик знает о числах, можно применять к действительно существующим предметам?

Гиппократ. Это так.

Сократ. А в отношении геометрии? Не опирается ли архитектор на геометрические теоремы, когда он чертит план постройки? Не использует ли он знаменитую теорему Пифагора, когда вычерчивает прямой угол?

Гиппократ. Ты прав.

Сократ. А не использует ли геометрию также землемер?

Гиппократ. Это общеизвестно.

Сократ. А корабельный плотник или кровельщик?

Гиппократ. Они поступают точно так же.

Сократ. А когда гончар делает кувшин или мореплаватель подсчитывает, сколько зерна вмещают трюмы его корабля, разве они не нуждаются в математике?

Гиппократ. Конечно, хотя, мне кажется, в делах ремесленников не требуется слишком много математики. Для большинства подобных задач достаточно знать простые правила, известные еще чиновникам египетских фараонов, и новые открытия, о которых Театет рассказывал мне с таким усердием, совсем не используются и не нужны для практических дел.

Сократ. В одном ты прав, Гиппократ, но в другом ты снова ошибаешься. Возможно, придет время, когда люди из всех математических открытий будут извлекать практическую пользу. То, что сегодня только теория, когда-нибудь сможет приобрести крайнюю необходимость для реальной жизни. Не так ли?

Гиппократ. Меня интересует настоящее.

Сократ. Ты непоследователен, Гиппократ. Если ты хочешь стать математиком, то должен осознать, что будешь работать в большей мере для будущего. А теперь вернемся к главному вопросу. Мы увидели, что познание мира идей, то есть вещей, которые не существуют, в обычном смысле этого слова, может пригодиться в повседневной жизни для ответа на вопросы о реальном мире, Не удивительно ли это?

Гиппократ. Более того, непостижимо! Это действительно чудо.

Сократ. Возможно, это не так уж таинственно, и если мы вскроем сущность этого вопроса, то сможем найти подлинную жемчужину.

Гиппократ. Прошу тебя, дорогой Сократ, не говори загадками, подобно Пифии.

Сократ. Скажи мне в таком случае, удивляет ли тебя, когда кто-то, кто побывал в дальних странах, кто многое видел и многое испытал, возвращается домой и пользуется приобретенным опытом для того, чтобы дать хороший совет своим согражданам?

Гиппократ. Вовсе нет.

Сократ. Даже если страны, которые он посетил, находятся очень далеко и населены совершенно другим народом, разговаривающим на другом языке и поклоняющимся иным богам?

Гиппократ. Нет, даже в этом случае, потому что между разными народами есть много общего.

Сократ. Теперь скажи мне: если бы оказалось, что мир математики, несмотря на его особенности, в некотором смысле подобен нашему реальному миру, ты бы все еще удивлялся, что математика может применяться для изучения реального мира?

Гиппократ. В этом случае нет, но я не вижу никакого сходства между реальным миром и воображаемым миром математики.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Эволюция человека. Книга II. Обезьяны, нейроны и душа
Эволюция человека. Книга II. Обезьяны, нейроны и душа

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу.Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История Византии
История Византии

Византийская империя. «Второй Рим».Великое государство, колыбель православия, очаг высокой культуры?Тирания, безжалостно управлявшая множеством покоренных народов, давившая в подданных всякий намек на свободомыслие и жажду независимости?Путешественники с восхищением писали о блеске и роскоши «Второго Рима» и с ужасом упоминали о жестокости интриг императорского двора, о многочисленных религиозных и политических распрях, терзавших империю, о феноменально скандальных для Средневековья нравах знатных византийцев…Византийская империя познала и времена богатства и могущества, и дни упадка и разрушения.День, когда Византия перестала существовать, известен точно: 29 мая 1453 года.Так ли это? Что стало причиной падения Византийской империи?Об этом рассказывает в своей уникальной книге сэр Джон Джулиус Норвич.

Джон Джулиус Норвич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Жизненными циклами всего на свете – от растений и животных до городов, в которых мы живем, – управляют универсальные скрытые законы. Об этих законах – законах масштабирования – рассказывает один из самых авторитетных ученых нашего времени, чьи исследования совершили переворот в науке. «Эта книга – об объединенной и объединяющей системе концепций, которая позволила бы подступиться к некоторым из крупнейших задач и вопросов, над которыми мы бьемся сегодня, от стремительной урбанизации, роста населения и глобальной устойчивости до понимания природы рака, обмена веществ и причин старения и смерти. О замечательном сходстве между принципами действия городов, компаний и наших собственных тел и о том, почему все они представляют собой вариации одной общей темы, а их организация, структура и динамика с поразительной систематичностью проявляют сходные черты. Общим для всех них является то, что все они, будь то молекулы, клетки или люди, – чрезвычайно сложные системы, состоящие из огромного числа индивидуальных компонентов, взаимосвязанных, взаимодействующих и развивающихся с использованием сетевых структур, существующих на нескольких разных пространственных и временных масштабах…» Джеффри Уэст

Джеффри Уэст

Деловая литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Финансы и бизнес