Воображение добавляет неразберихи. Ваше понимание феномена искусственного интеллекта зависит от того, каким вы видите будущее. Один из студентов Марвина Минского, Рэй Курцвейл, является сторонником теории сингулярности – гипотезы, согласно которой к 2045 г. человек интегрируется с вычислительными системами. (Курцвейл известен тем, что изобрел музыкальный синтезатор, который звучит как рояль.) Современная научная фантастика охвачена идеей сингулярности. Однажды во время интервью для конференции футуристов меня спросили о теории скрепок: «Что если бы вы изобрели машину, которая хочет делать скрепки, затем научили бы ее хотеть делать что-то другое, а потом машина создала бы множество других машин и они бы захватили мир? Это и есть сингулярность? – спросил интервьюер. – Беспокоит ли вас это?» Это забавно, хотя и бессмысленно. Машину можно просто выключить из розетки. Проблема решена. А еще это чисто гипотетическая ситуация.
Как сказал психолог Стивен Пинкер в специальном выпуске журнала
Ян Лекун из Facebook тоже скептично относится к идее сингулярности. В своем комментарии
Я попытаюсь внести ясность в сложившийся хаос: определим, что такое машинное обучение, и на примере посмотрим, как абсолютно любой человек может его использовать применительно к массиву данных. Я не просто покажу несколько путей использования машинного обучения, но и приведу кусочек кода. Будет много технических деталей, но, если они вас смущают, не переживайте – к ним можно вернуться чуть позже.
Искусственный интеллект оказался на пике популярности в 2017 г., до этого годами длилась «зима ИИ». В 2000-х гг. ИИ попросту игнорировался общественным дискурсом. Поначалу все технологическое внимание и наше коллективное воображение занимал интернет, затем мобильные устройства. В середине 2010-х люди заговорили о машинном обучении. Внезапно ИИ стал горячей темой. Повсюду появились стартапы в этой области. Watson от IBM победил человека в Jeopardy!; алгоритм перехитрил человека в игре го. Даже слова «машинное обучение» звучали круто. Машина может учиться! Надежды сбылись!
И поначалу мне хотелось верить в то, что каким-то гениям удалось решить сложнейшую задачу и заставить машину думать, но, присмотревшись, я поняла, что реальность куда сложнее. В действительности ученые дали машинному обучению новый смысл, соответствующий ему. Они так часто его использовали, что значение действительно изменилось.
Такое случается. Язык – это подвижная структура. Хороший тому пример – слово literally (буквально), которое обычно было антонимом к слову figuratively (фигурально)[78]. В 1990-е гг., если бы вы сказали что-то вроде «Мой рот буквально горел после этого перца чили», это бы означало, что у вас во рту случился реальный пожар и из-за ожогов третьей степени вам пришлось говорить прямо из реанимационного отделения. Однако в 2000-х люди стали повсеместно использовать это слово как синоним «фигурально» и для усиления эффекта. «Я буквально бы убил кого-нибудь, если бы пришлось снова слушать песню Джона Майера» стали интерпретировать как «Я бы предпочел не слушать песню Джона Майера снова», а не предупреждение о готовящемся убийстве или беспорядках.
Согласно Оксфордскому словарю, термин «машинное обучение» вошел в массовый вокабуляр в 1959 г. А начиная с 2000-х гг. и третьего издания словаря термин стали включать целиком как словосочетание. Оксфордский словарь определяет машинное обучение как: