Читаем Капля полностью

Вот опыт, который демонстрируют на школьных уро­ках физики или рассказывают о нем. Небольшой стеклян­ный колпак (перевернутый стакан) установлен на стек­ле. Под колпаком блюдечко с водой и рядом на предмет­ном стеклышке капли воды. Эти капли надо поместить на стеклышко после того, как пространство под колпаком на­сытится водяным паром, который образуется над плоской поверхностью воды в блюдце. Через некоторое время капли исчезнут — они испарятся, а возникшие при этом в водяном паре молекулы воды сконденсируются на по­верхности воды в блюдце.

Итак, в начале опыта под колпаком было три объекта: вода в блюдце, вода в каплях и насыщенный водяной пар. Опыт окончился, когда один из объектов исчез — капель не стало. Здесь все ясно: согласно формуле, давление пара над изогнутой поверхностью водяной капли больше, чем над плоской поверхностью воды в блюдце, и пар под влиянием этой разности давлений двигался по направлению к блюд­цу — уходил оттуда, где его давление больше, и приходил туда, где его давление меньше. Чтобы вблизи своей поверх­ности поддерживать давление, предписываемое ей форму­лой, капля должна все время испаряться. Она это добро­совестно делала и в конце концов исчезла.

А теперь тот же опыт только не с каплями и атомами ре­альной жидкости, а с «каплями» и «атомами» пустоты. Вме­сто колпака с блюдцем и каплей — монокристалл. Он огра­нен плоскими поверхностями и в объеме имеет одну пору сферической формы. Вблизи изогнутой поверхности поры (капля!) концентрация вакансий повышена, а вблизи плоской поверхности, которая отделяет кристалл от ок­ружающего пространства (вода в блюдце!), концентрация вакансий нормальная, не повышена. Очевидно, появится поток вакансий от поры к поверхности кристалла, и, подобно капле воды, пора исчезнет — «испарится в кри­сталл». Образовавшийся при этом в кристалле избыток вакансий со временем сгладится — вакансии либо по­глотятся внутренними стоками, либо с помощью диффузии переместятся к внешней поверхности кристалла.

Начали мы опыт с пористым, а окончили с беспористым кристаллом! Как быстро это произойдет? Все зависит от размеров поры и температуры кристалла. Например, пора, радиус которой один микрон, в медном кристалле при тем­пературе 1000° С исчезает приблизительно за 30 мин.

Все рассказанное о формуле, об аналогии между реаль­ными каплями и каплями пустоты лежит в основе целого раздела современной физики твердого тела— физики спе­кания, которая объясняет, как пористые кристаллические тела самопроизвольно при высоких температурах превра­щаются в плотные. Оказывается, капли пустоты могут испаряться в кристалл!

Удобная «постель» для капли

В названии очерка нет надуманности — его содержание находится в полном соответствии с названием. Дело в том, что гладкая, чистая, полированная поверхность твердого тела для жидкой капли неудобна. Попав на нее, капля бу­дет пытаться изменить, улучшить подложку, сделать ее более удобной, даже если для этого ей придется трудиться очень долго.

 

Взаимное расположение сил, действующих на контур капли, лежащей на гладкой твердой поверхности

Напомню, что нет ничего удобнее для капли, чем быть взвешенной в пространстве, в невесомости: ни с чем она не соприкасается, никакие силы ее не искажают и ни к ка­ким изменениям она не стремится. А на пластинке с пло­ской поверхностью все не так, даже если пластинка с кап­лей находится в невесомости.

Вначале подумаем над тем, чем гладкая поверхность не­удобна для жидкой капли. Казалось бы, капля подвижна и должна, переливаясь, как-то приспособиться к плоской поверхности, сделать свое пребывание на ней удобным. Оказывается, что одним изменением собственной формы добиться этого капля не может.

Посмотрите на приведенный рисунок. На нем изображе­на капля жидкости, смачивающей твердую поверхность (угол — острый). Стрелками обозначены силы, обуслов­ленные поверхностным натяжением на границе подлож­ка — капля (21), подложка — воздух (20) и капля — воздух (10). Все дальнейшее можно было бы рассказать, имея в виду и каплю, не смачивающую твердую поверх­ность. Но мы остановимся на случае, который изображен на рисунке. Из него с очевидностью следует, что три силы, которые соответствуют поверхностным натяжениям твер­дое — воздух, твердое — капля и капля — воздух, ни при какой форме капли не могут прийти в равновесие, так как первые две из них направлены одна против другой и лежат в одной плоскости, а третья — под углом к ней. Именно поэтому имеется нескомпенсированная сила, приложенная к контуру капли,— на рисунке она обозначена жирной стрелкой и, пожалуй, может считаться количественной мерой степени неудобства подложки. Капле надо сделать что-либо с собой или с подложкой, чтобы избавиться от нее.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука