2. Нетепловое излучение.
Из формулы (34.4) видно, что в случае теплового излучения яркостная температура T не может превосходить температуру электронного газа Te. Если же наблюдения дают, что TTe то надо сделать заключение о наличии нетеплового излучения.
Как мы знаем, электронная температура в зонах H II составляет примерно 10 000 K. Однако яркостная температура радиоизлучения Галактики в метровом диапазоне оказывается гораздо больше, достигая значений порядка сотен тысяч градусов. Поэтому необходимо считать, что часть галактического радиоизлучения в непрерывном спектре имеет нетепловую природу.
Этот вывод подтверждается найденной из наблюдений зависимостью интенсивности радиоизлучения от частоты. Обычно интенсивность радиоизлучения и его яркостная температура представляются в виде
I
~
n
,
T
~
n-2
,
(34.9)
где n — некоторая постоянная. Для теплового излучения n=0 (в случае непрозрачности излучающего слоя I убывает с ростом длины волны, а в случае его прозрачности I=const). Однако для галактического радиоизлучения в метровом диапазоне получено, что n0,5, т.е. интенсивность возрастает с ростом длины волны.
Таким образом, галактическое радиоизлучение состоит из двух частей: теплового и нетеплового. В метровом диапазоне нетепловое излучение преобладает над тепловым. Однако с уменьшением длины волны интенсивность нетеплового излучения падает и в дециметровом диапазоне она оказывается такого же порядка, как и интенсивность теплового излучения. В сантиметровом диапазоне преобладает уже тепловое излучение, идущее, как было выяснено выше, от зон ионизованного водорода.
Следует отметить, что облака ионизованного водорода иногда наблюдаются и в метровом диапазоне, но не по их излучению, а по поглощению. Это происходит тогда, когда облако H II проектируется на область Галактики, излучающую на метровых волнах с очень большой яркостной температурой.
В результате многочисленных наблюдений были составлены подробные карты радиоизлучения Галактики. Из них видно, что излучение на сантиметровых волнах идёт к нам от узкой полосы, расположенной вдоль галактического экватора. Оно возникает в зонах H II, находящихся в спиральных рукавах. Излучение же на метровых волнах идёт как от узкой галактической полосы, так и от очень протяжённой области, интенсивность излучения которой медленно убывает с удалением от галактической плоскости. Эта область имеет приблизительно сферическую форму и представляет собой корону Галактики.
Следует считать, что нетепловое радиоизлучение Галактики представляет собой тормозное излучение релятивистских электронов в магнитном поле (т.е. оно обусловлено синхротронным механизмом). Впервые такое представление было выдвинуто в 1950 г. Альвеном и Герлофсоном и независимо от них Киппенхойером. Названные авторы обосновывали его тем, что в галактическом пространстве должно существовать огромное число частиц высоких энергий, которые вызывают наблюдаемое на Земле явление космических лучей.
Основные формулы для определения интенсивности синхротронного излучения были даны в § 31 при рассмотрении радиоизлучения дискретных источников, являющихся остатками сверхновых. Эти формулы можно применять и к нетепловому радиоизлучению Галактики. Так как наблюдённая зависимость интенсивности радиоизлучения от частоты выражается формулой (34.9), в которой n0,5, то энергетический спектр релятивистских электронов будет определяться формулой (31.9), в которой 2. Далее, по интенсивности излучения I и по длине пути луча в Галактике r при помощи соотношения
I
=
r
(34.10)
можно найти объёмный коэффициент излучения . Сравнение этого значения с его теоретическим значением, даваемым формулой (31.10), позволяет оценить либо концентрацию релятивистских электронов в Галактике, либо напряжённость магнитного поля (если задана одна из этих величин, то находится другая). Примем, что число релятивистских электронов составляет примерно 1% от числа частиц с высокой энергией (оцениваемого по наблюдаемому потоку космических лучей). Тогда для напряжённости магнитного поля в Галактике получаются значения порядка 10-10 эрстед. При этом в галактической короне напряжённость магнитного поля оказывается в 2—3 раза меньше, чем в диске Галактики.