На велосипедном колесе легко установить изохронность малых и неизохронность больших колебаний. Нетрудно также найти зависимость периода колебаний от амплитуды и установить качественный характер любых движений.
Однако построить экспериментальные графики движений не очень просто. Самый удобный способ — сделать киносъемку движений колеса, но это уже достаточно дорогостоящий опыт. Замечательно, что зависимость угла от времени для самых разных движений можно определить на опыте с помощью очень простой системы, которая, на первый взгляд, не имеет ничего общего с маятником.
Возьмем тонкую и достаточно длинную стальную проволочку. Она должна легко гнуться без заметной остаточной деформации. Если ее положить на стол и слегка сжать на концах, она примет форму полусинусоиды, как указано в верхней части рис. 4.15.
Проведем касательные к получившейся кривой и будем отсчитывать угол φ, как указано на рисунке. Длину дуги
С движением маятника связаны любые формы изгиба проволочки. Каждой зависимости φ(
*) Формы изгиба упругой проволочки первым изучил Леонард Эйлер. Их называют «эластиками Эйлера».
Заключительные замечания
Метод необходим для отыскания истины.
Мы заканчиваем самую трудную главу в этой книге, главное содержание которой — основные идеи теории нелинейных колебаний, изложенные на простейших, но не тривиальных примерах. Читателю, желающему понять, как устроены солитоны, необходимо ясно представить себе линейные и нелинейные колебания маятника. Особенно хорошо нужно понять энергетические соотношения и движения, фазовые траектории которых сепаратрисы (формулы (4.9), (4.10) и рис. 4.14). Эти решения позволят нам понять с помощью простых аналогий очень важные солитоны. Один из примеров — ручной солитон, который связан с асимптотическим движением маятника аналогией Кирхгофа.
Метод физических аналогий и моделей, которым с таким успехом пользовались великие физики прошлого века, и сегодня сохраняет ценность. Особенно плодотворен он в теории колебаний, волн и солитонов, где одни и те же уравнения описывают множество совершенно различных систем. Можно высказать некоторые общие принципы получения таких аналогий. Пусть состояния двух систем определяются одинаковым числом переменных, или, как говорят, обобщенных координат (например, угол φ для маятника, заряд конденсатора Q в колебательном контуре и т. д.). Предположим, что энергии этих систем Е1 и Е2 сохраняются и что посредством некоторого переобозначения обобщенных координат и параметров, характеризующих системы (массы, емкости, индуктивности и т. д.), можно сделать величины Е1 и Е2 одинаковыми функциями координат (с точностью до постоянного множителя). Тогда ясно, что системы полностью аналогичны и между их «движениями», каков бы ни был их смысл, можно установить полное соответствие.
Правда, здесь есть некоторые тонкости. Например, новые обобщенные координаты, от которых энергии зависят одинаково, могут изменяться в разных пределах. Более существенная тонкость связана с тем, что для систем разной природы нас могут интересовать разные задачи. Если между системами имеется точная аналогия, то их обобщенные координаты удовлетворяют одинаковым уравнениям движения. (Собственно, это и есть определение точной аналогии, просто иногда удобнее иметь дело с энергией.) Однако мы знаем, что для определения конкретного движения нужно задать некоторые дополнительные условия, например, начальные значения координат и скоростей.