Читаем Принцесса или тигр полностью

Рассмотрим систему аксиом со следующими свойствами. Прежде всего пусть у нас имеются имена для различных множеств положительных целых чисел, причем все эти «именуемые», или допускающие наименование, множества мы можем расположить в виде бесконечной последовательности А1, А2…, An… (точно так же, как в системе Фергюссона, рассмотренной в предыдущей главе). Назовем число n индексом именуемого множества А, если А=n. (Таким образом, если, например, множества А2, А7 и A13 совпадают между собой, то тогда числа 2, 7 и 13 — это все индексы одного и того же множества.) Как и для системы Фергюссона, с каждым числом х и с каждым числом у мы связываем утверждение, записываемое в виде х Є Ау, которое называется истинным, если х принадлежит А у, и ложным, если х не принадлежит Ау. Однако в дальнейшем мы не предполагаем, что утверждения типа х Є Ау являются единственно возможными утверждениями в данной системе, поскольку могут существовать и другие. Предполагается также, что любое возможное утверждение обязательно классифицируется либо как истинное, либо как ложное.

Каждому утверждению в данной системе присваивается некий кодовый номер, который мы будем называть геделевым номером, причем гёделев номер утверждения x Є АУ будем обозначать х*у. (Теперь уже нет нужды предполагать, что число х*у состоит из цепочки единиц миной х, за которой следует цепочка нулей длиной у; cам Гёдель фактически использовал совсем другую кодовую нумерацию. Можно пользоваться самыми разными видами кодовой нумерации, и какой вид оказывался более удобным — это зависит от конкретного вида рассматриваемой нами системы. Так или иначе, для доказательства той общей теоремы, которую мы скоро докажем, нет необходимости вводить какую-то конкретную гёделеву нумерацию.)

Определенные утверждения в данной системе принимаются как аксиомы; кроме того, вводятся также некие специальные правила, по которым можно на основании этих аксиом доказывать различные другие утверждения. Таким образом, в данной системе имеется иполне определенное свойство утверждения, называемое его доказуемостью.

Далее предполагается, что система правильна в том смысле, что каждое доказуемое в этой системе утверждение является истинным; отсюда, в частности, следует, что если утверждение x Є Aу доказуемо в данной системе, то число х действительно является элементом множества Ау.

Пусть Р — это набор гёделевых номеров всех доказуемых в данной системе утверждений. Пусть опять же для любого множества чисел А его дополнение обозначается символом А (это множество всех чисел, не принадлежащих А). Наконец, через А* мы будем обозначать множество всех чисел х, для которых число x*х принадлежит А. При этом нас будут интересовать системы, для которых выполняются следующие три условия Gi, G2 и G3:

Условие G1. Множество Р допускает наименование в данной системе. Иначе говоря, существует по крайней мере одно число р, для которого Ар представляет собой множество гёделевых номеров доказуемых утверждений. (Для системы Фергюссона таким р было число 8.)

Условие G2. Дополнение любого множества, допускающего наименование в данной системе, также именуемо в этой системе. Иначе говоря, для любого числа х найдется такое число х, для которого множество А* является дополнением множества Ах. (Для системы Фергюссона таким х было число 3х.)

Условие G3. Для любого именуемого множества А множество А* также именуемо в данной системе. Иначе говоря, для любого числа x всегда найдется такое число х*, что множество А, — представляет собой, множество всех чисел n, для которых n*n принадлежит А, (Для системы Фергюссона таким х* было число 3x+1.)

Очевидно, что условия F1, F2 и Fз, характеризующие машину Фергюссона, представляют собой не более чем частные случаи условий G1, G2 и G3. Последние имеют большое значение потому, что они действительно выполняются для самых разнообразных математических систем, в том числе и для тех двух систем, которые рассмотрены в работе Гёделя. Другими словами, оказывается возможным расположить все допускающие наименование множества в виде бесконечной последовательности A1, A2…, An… и ввести для всех утверждений некоторую частную нумерацию Гёделя, причем так, что будут выполняться условия G 1, G2 и G3. В результате все то, что является доказуемым для систем, удовлетворяющих условиям G1, G2 и G3, будет применимо ко многим другим важным системам. Теперь мы можем сформулировать и доказать теорему Гёделя в общей форме.

Теорема G. Для любой правильной системы, удовлетворяющей условиям G1, G2 и G3, должно существовать утверждение, которое является истинным, но недоказуемым в данной системе.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное