Читаем Простые числа полностью

Теорема имеет ограничения, поскольку, как мы видели, она дает необходимое, но не достаточное условие. Например, если взять р = 7, мы видим, что З6 — 1 делится на 7. Нет никакой гарантии, что 7 — простое число (мы-то знаем, что это простое число, потому что взяли для примера небольшие числа, но мы должны представить, что имеем дело с большими числами). Однако если взять р = 8, мы видим, что при делении З7 — 1 на 8 получается 273,25, а значит, остаток не ноль. Теперь мы уверены, что 8 — не простое число (не находя его делителей).

Мы знаем точно, что любое число, которое не проходит тест с данным основанием а у является составным.

С другой стороны, если число проходит тест и является простым, мы называем основание «ложным». И продолжаем тестирование. Вероятность обнаружения «ложных» чисел уменьшается на 1/2 с каждым тестом, так что вероятность того, что число является простым, продолжает расти.

Число р, которое, не являясь простым, проходит тест с основанием а, называется псевдопростым для этого основания. Можно дать более общее определение псевдопростого числа: число называется псевдопростым, если оно проходит тест простоты, но оказывается составным.

Дело обстоит сложнее для чисел, которые проходят тесты с любым основанием, но не являются простыми. Например, число 561 проходит тест простоты с любым основанием и все же является составным (561 = 3 х 11 х 17). Такие числа, открытые американским математиком Робертом Кармайклом (1879–1967), называются числами Кармайкла. Сегодня известно 2163 числа Кармайкла, и они находятся среди первых 25 млрд натуральных чисел. Все они имеют по крайней мере три простых делителя.

Существует 16 чисел Кармайкла, меньших 100 000, а именно:

561,1105,1729, 2465, 2821, 6601, 8911,10585,15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361.

Числа Кармайкла также называют абсолютными псевдопростыми числами.

Тесты простоты

Сегодня существует два типа алгоритмов, используемых для определения, является ли число простым: детерминированный полиномиальный и вероятностный полиномиальный.

Первый из них точно устанавливает, является ли число простым, но требует много времени. Второй метод быстрее, но при его применении существует некоторая неопределенность результата.

Наиболее широко используется так называемый «тест Миллера — Рабина», версия теста простоты Ферма, основанная на гипотезе Римана. Это вероятностный полиномиальный алгоритм, но вероятность ошибки составляет от 1/1080 до 1/1050, поэтому на практике он может считаться вполне точным.

6 августа 2002 г. три исследователя из технологического института в Канпуре (Индия), Маниндра Агравал, Нирадж Каял и Нитин Саксена, опубликовали полиномиальный детерминированный тест простоты на основе обобщения малой теоремы Ферма:

Несмотря на это, наиболее часто используемым методом по-прежнему является вероятностный полиномиальный алгоритм — в силу своего быстродействия.

Большинство веб-браузеров включает алгоритм шифрования, который может использовать такой метод для поиска больших простых чисел до 2048 битов.

Сегодня используются три криптографических системы: RSA, DSA (Digital Signature Algorithm, алгоритм цифровой подписи), и ECDSA (Elliptical Curve Digital Signature Algorithm, алгоритм цифровой подписи на эллиптических кривых). Ни один эксперт не сомневается в безопасности, предоставляемой каждой из этих трех систем. Разница между ними заключается в кодах, которые они используют: безопасность, которую обеспечивают 2048-битные коды в первых двух, эквивалентна использованию 224 битов в третьей, при этом время вычислений значительно уменьшается. В то время как в первых двух используются субэкспоненциальные алгоритмы, в третьей применяется экспоненциальный тип, что дает лучшие результаты.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное