Читаем Современная западная философия полностью

Из этих постулатов следовало, что не существует единого для всех систем понятия одновременности: те события, которые одновременны в одной системе, вовсе не будут одновременными в другой, которая движется относительно первой со скоростью, сравнимой со скоростью света [1]. В общем виде приходится сделать вывод, что в разных системах время течет по-разному и свойства пространства различаются, поскольку в них различны временные интервалы и длины. Соответственно, чтобы достигнуть единообразия в механических измерениях, необходимо вместо двух независимых друг от друга понятий пространства и времени - ввести единое понятие пространственно-временного континуума. Это понятие отличается от привычного евклидова трехмерного "пространственного" многообразия тем, что оно обладает четвертой, временной размерностью.

1 Стандартный пример из учебника по релятивистской механике: если с позиций наблюдателя, находящегося в середине движущегося поезда, две молнии ударили в голову и хвост состава одновременно, то для наблюдателя, который видит это событие с обочины дороги, эти события вовсе не одновременны.

Следующим важным выводом теории относительности является утверждение об эквивалентности энергии и массы, выраженное в самой, пожалуй, известной формуле современной физики: Е = mС2.

Позднее, в 1916 г., А.Эйнштейн разработал также общую теорию относительности применительно к системам, которые не являются инерциальными, то есть движутся друг относительно друга неравномерно. Важнейшим утверждением этой теории является трактовка тяготения как искривления геометрии пространства в зависимости от массы, как это представлено математически в геометрии Римана. Из расчетов Эйнштейна получалось, что наша Вселенная является хотя и безграничной, но конечной и стабильной. Продолжая эту программу исследований и основываясь на астрофизических измерениях, Фридман в 1922 г. пришел к другому выводу - что Вселенная нестабильна и раздувается наподобие воздушного шарика, когда его наполняют газом [1].

206

Не менее глубокие перемены были связаны с развитием квантовой физики. Ее базовый принцип состоит в том, что энергетический обмен совершается не непрерывно, а дискретно, мельчайшими порциями, квантами. У истоков этой теории стоял М. Планк, который ввел понятие "кванта действия", выраженное в формуле Е= hv. Позднее Н. Бор использовал квантовую теорию для объяснения строения атомов и особенностей спектров излучения различных химических элементов. Французский физик де Бройль распространил квантовые представления на процессы распространения света, введя понятие "волнового пакета" и попытавшись тем самым связно объяснить волновые и корпускулярные свойства света, о которых свидетельствовали, казалось бы, безнадежно противоречившие друг другу серии различных экспериментов [2]. Эту двойственность волны и частицы (которую физики скоро распространили на строение всей материи) Н.Бор истолковал как принципиальный феномен, сформулировав принцип дополнительности, согласно которому волновое и корпускулярное описания неизбежно и противоречат друг другу, и друг друга дополняют.

1 Так называемое "красное смещение": излучение отдаленных нас галактик сдвинуто в красную сторону спектра, откуда можно сделать вывод, что они разбегаются в разные стороны от некоего общего центра.

2 Например, фотоэффект, который можно объяснить только с квантовых позиций, и практика создания оптических телескопов, которая базируется на волновой теории света.

Весьма важным для развития микрофизики оказался принцип неопределенности, сформулированный В. Гейзенбергом. Согласно этому принципу и в результате квантово-волнового дуализма, координата и импульс не могут быть определены независимо друг от друга и с абсолютной точностью. Принцип дополнительности и соотношение неопределенностей составили основу "копенгагенского толкования" физических процессов, которое пропагандировалось Н. Бором и его последователями. Важнейшим его моментом было введение волновой функции как способа определения вероятности положения микрообъектов; при этом именно вероятностное описание микропроцессов предлагалось понимать как полное. Это не значит, что, скажем, точная фиксация пространственного положения микрообъекта средствами эксперимента вообще невозможна - но попытка максимально точно определить его положение в пространстве средствами эксперимента приводит к тому, что его энергетические характеристики, его импульс становятся совершенно неопределенными. Говоря "копенгагенским" языком,

207

происходит "редукция волнового пакета", что означает переход из состояния возможного положения (представленного волновой функцией) в состояние действительного положения. При этом важно иметь в виду, что применительно к любому отдельному событию такого рода абсолютно точное его предсказание принципиально невозможно.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже