Есть несколько типов светодиодных ламп, которые представлены пятью сериями: лампы общего (цоколь Е27, Gu5.3, GulO) и акцентного освещения (цоколи Gu5.3, GulO) для сетей 220 В, лампы с цоколем Е27 и широким углом освещения 250°, а при использовании встраиваемых точечных светильников – лампы с цоколем Gu5.3 и GulO, имеющие угол светового пучка 120°. В лампах для точечной подсветки с типом цоколя Gu5.3 и GulO применяется технология СОВ (chip on board), при которой светодиодные кристаллы расположены на едином основании, что не только повышает надежность лампы, но и обеспечивает более стабильные световые характеристики. Благодаря использованию рефлектора с углом светового пучка 60° удается получить приемлемую замену галогеновым лампам.
Все эти сведения так или иначе известны, однако в книге дискутируется вопрос о том, почему СЛ для бытового предназначения не вырабатывают расчетного (производителем) срока службы (50 000 и более часов) в условиях, соответствующих их заявленным эксплуатационным характеристикам. Ответ на этот вопрос получим после предметного изучения/разбора устройства С Л для бытовых нужд. Здесь имею в виду именно те лампы, которые продаются сегодня в открытом доступе в магазинах.
3.1. Причины и следствия неисправности осветительных светодиодныхдгамп
Итак, в моем опытном случае стало ясно, что именно конструкция (технология изготовления) СЛ оказывает значительное влияние не только на ресурс работы и надежность, но и на стоимость готовых изделий. Так, оптимальная конструкция призвана обеспечить отвод тепла от кристалла, выдерживать термоциклирование, обеспечить высокую технологичность монтажа. На долговечность работы СЛ также влияют метод монтажа кристалла и материал теплоотводящего основания.
На рис. 3.1 представлен вид на светильник с тремя СЛ типоразмера Е14.
Уточнение загородной, безусловно, важное, поскольку – об этом поговорим далее – определяет относительную редкость включения лампы.
Если разобрать СЛ типоразмера Е14 (рис. 3.1), то откроется вид на содержимое устройства – теплоотвод и преобразователь напряжения. Внешний вид разобранного корпуса СЛ представлен на рис. 3.2.
Электронный импульсный источник питания, встроенный в цоколь (типа Е27, Е14), чувствителен не только к напряжению сети, но и к его частоте.
На моем примере эта лампа «прослужила» чуть меньше года, если быть точным, то 116 часов в режиме постоянного включения, а включений/выключений «пережила» не более 100, поскольку пользовался загородной мастерской в этот период времени нечасто. Температурный режим в мастерской соответствовал требованиям производителя СЛ, температура не опускалась ниже +16 °C, в холодный период года – с октября по апрель – мастерская отапливается централизованным отоплением. Светильник также был лишен вредных воздействий атмосферных осадков, поскольку находится в доме. Подача напряжения в осветительную сеть осуществляется через специальный стабилизатор с выходной мощностью 10 кВт.
Таким образом, сеть защищена от перегрузок (перенапряжений). И тем не менее при очередном включении летом 2016 года одна СЛ (из трех в составе потолочного светильника) погасла. При следующем включении (после выключения) погасла вторая. Эта ситуация явилась импульсом к исследованию проблемы. Притом третья СЛ продолжает светить и по сей день (не стала неисправной).
Две неисправные лампы были мною последовательно разобраны, и причина неисправности – одна и та же – установлена практическим методом.
Для того чтобы разобрать СЛ, потребуется снять колбу – с усилием и вращательным движением; она поставлена на клей, и затем снять крепления светодиодного кластера с помощью тонкой крестовой отвертки. Этот шаг иллюстрирует рис. 3.3.
После этого шага открывается доступ к «начинке» цоколя СЛ, а именно к печатной плате источника питания (см. рис. 3.4).
Самое слабое звено этой платы – оксидный конденсатор емкостью 2,2 мкФ на рабочее напряжение 400 В. Если он даже незначительно теряет емкость и тем более полностью выходит из строя, выходное напряжение источника питания – адаптера значительно падает, и светодиоды могут не зажигаться вообще.