В соответствии с вариантом III
, математическое понимание представляет собой результат выполнения некоего непознаваемого алгоритма. Что же конкретно означает определение «непознаваемый» применительно к алгоритму? В предшествующих разделах настоящей главы мы занимались вопросами принципиальными. Так, утверждая, что неопровержимая истинность некоторого Π1-высказывания доступна математическому пониманию человека, мы, по сути, утверждали, что данное Π1-высказывание постижимо в принципе, отнюдь не имея в виду, что каждый математик когда-нибудь да сталкивался с реальной демонстрацией его истинности. Применительно к алгоритму, однако, нам потребуется несколько иная интерпретация термина «непознаваемый». Я буду понимать его так: рассматриваемый алгоритм является настолько сложным, что даже описание его практически неосуществимо.Когда мы говорили о выводах, осуществляемых в рамках какой-то конкретной познаваемой формальной системы, или о предполагаемых результатах применения того или иного известного алгоритма, рассуждения в терминах принципиально возможного или невозможного и в самом деле выглядели как нельзя более уместными. Вопросы возможности или невозможности вывода того или иного конкретного предположения из такой формальной системы или алгоритма рассматривались в «принципиальном» контексте в силу элементарной необходимости
. Похожим образом обстоит дело с установлением истинности Π1-высказываний. Π1-высказывание признается истинным, если его можно представить в виде операции некоторой машины Тьюринга, незавершаемой принципиально, вне зависимости от того, что мы могли бы получить на практике путем непосредственных вычислений. (Об этом мы говорили в комментарии к возражению Q8.) Аналогично, утверждение, что какое-то конкретное предположение выводимо (либо невыводимо) в рамках некоей формальной системы, следует понимать в «принципиальном» смысле, поскольку такое утверждение, в сущности, представляет собой вид утверждения об истинном (или, соответственно, ложном)характере какого-то конкретного Π1-высказывания (см. окончание обсуждения возражения Q10). Соответственно, когда нас интересует выводимость предположения в рамках некоторого неизменного набора правил, «познаваемость» всегда будет пониматься именно в таком «принципиальном» смысле.Если же нам предстоит решить вопрос о «познаваемости» самих правил, то здесь необходимо прибегнуть к «практическому» подходу. Принципиально
возможно описать любую формальную систему, машину Тьюринга, либо Π1-высказывание, а следовательно, если мы хотим, чтобы вопрос об их «непознаваемости» имел хоть какой-нибудь смысл, нам следует рассматривать его именно в плоскости возможности их практической реализации. В принципе, познаваемым является абсолютно любой алгоритм, каким бы он ни был, — в том смысле, что осуществляющая этот алгоритм операция машины Тьюринга становится «известной», как только становится известным натуральное число, являющееся кодовым обозначением данной операции (например, согласно правилам нумерации машин Тьюринга, приведенным в НРК). Нет решительно никаких оснований предполагать, что принципиально непознаваемым может оказаться такой объект, как натуральное число. Все натуральные числа (а значит, и алгоритмические операции) можно представить в виде последовательности 0, 1, 2, 3, 4, 5, 6, …, двигаясь вдоль которой, мы — в принципе — можем со временем достичь любого натурального числа, каким бы большим это число ни было! Практически же, число может оказаться настолько огромным, что добраться до него таким способом в обозримом будущем не представляется возможным. Например, номер машины Тьюринга, описанной в НРК (на с. 56), явно слишком велик, чтобы его можно было получить на практике посредством подобного перечисления. Даже если мы были бы способны выдавать каждую последующую цифру за наименьший теоретически определимый временной промежуток (в масштабе времени Планка равный приблизительно 0,5 × 10-43 с, см. §6.11), то и в этом случае за все время существования Вселенной, начиная от Большого Взрыва и до настоящего момента, нам не удалось бы добраться до числа, двоичное представление которого содержит более 203 знаков. В числе, о котором только что упоминалось, знаков более чем в 20 раз больше — однако это ничуть не мешает ему быть «познаваемым» в принципе, причем в НРК, это число определено в явном виде.