Когда ток через нагрузку увеличивается, ток через стабилитрон уменьшается, и сумма этих токов поддерживает напряжение постоянным. Это позволяет цепи поддерживать постоянное выходное напряжение при изменениях выходного тока так же, как и при изменениях входного напряжения.
На рис. 27–18 изображена параллельная регулирующая цепь, использующая транзистор. Заметим, что транзистор Q1 включен параллельно нагрузке. Это защищает регулятор в случае короткого замыкания в нагрузке. Существуют более сложные параллельные регуляторы, которые используют больше одного транзистора.
Рис. 27–18.
Последовательный регулятор популярнее чем параллельный регулятор. Простейшим последовательным регулятором является переменный резистор, включенный последовательно с нагрузкой (рис. 27–19).
Рис. 27–19.
Сопротивление регулируется непрерывно для поддержания постоянного напряжения на нагрузке. При увеличении постоянного напряжения сопротивление увеличивают, чтобы на нем падало излишнее напряжение. Это сохраняет постоянное падение напряжения на нагрузке, так как избыточное напряжение падает на последовательно включенном резисторе.
Переменный резистор может компенсировать и изменения тока нагрузки. При увеличении тока нагрузки падение напряжения на переменном резисторе увеличивается.
Это приводит к уменьшению падения напряжения на нагрузке. Если в момент увеличения тока уменьшить сопротивление, то падение напряжения на переменном резисторе останется постоянным. В результате постоянным окажется и выходное напряжение, несмотря на изменения тока нагрузки.
На практике достаточно трудно вручную изменять сопротивление резистора для компенсации изменений напряжения и тока. Более эффективно заменить переменный резистор транзистором (рис. 27–20).
Рис. 27–20.
Транзистор включен таким образом, что через него течет ток нагрузки. Путем изменения тока базы транзистора можно управлять величиной тока, текущего через транзистор. Для того, чтобы сделать эту цепь саморегулирующейся, требуются дополнительные компоненты (рис. 27–21).
Рис. 27–21.
Эти компоненты позволяют транзистору автоматически компенсировать изменения входного напряжения и тока нагрузки.
На рис. 27–22 изображен простой последовательный стабилизатор.
Рис. 27–22.
На его вход подается нестабилизированное постоянное напряжение, а на его выходе получается стабилизированное постоянное напряжение меньшее по величине. Транзистор включен как эмиттерный повторитель, и поэтому здесь отсутствует обращение фазы между базой и эмиттером. Напряжение на эмиттере повторяет напряжение на базе. Нагрузка подключена между эмиттером транзистора и землей. Напряжение на базе транзистора устанавливается с помощью стабилитрона. Следовательно, выходное напряжение равно напряжению стабилизации стабилитрона за вычетом 0,7 вольта падения напряжения на переходе база-эмиттер.
Когда входное напряжение на транзисторе увеличивается, выходное напряжение также пытается увеличиться. Напряжение на базе транзистора установлено с помощью стабилитрона. Если на эмиттере появляется положительный потенциал больший, чем на базе, проводимость транзистора уменьшается. Когда транзистор уменьшает свою проводимость, это действует так же, как включение между входом и выходом большого резистора. Большая часть добавившегося входного напряжения падает на транзисторе и только малая его часть увеличит выходное напряжение.
Недостатком стабилизатора с эмиттерным повторителем является то, что стабилитрон должен быть рассчитан на достаточно высокую мощность, а стабилитроны большой мощности стоят дорого.
Наиболее популярным типом последовательных стабилизаторов является стабилизатор с обратной связью. Он содержит цепь обратной связи, контролирующую выходное напряжение. При изменениях выходного напряжения появляется управляющий сигнал. Этот сигнал управляет проводимостью транзистора. На рис. 27–23 изображена блок-схема стабилизатора с обратной связью.
Рис. 27–23.
Нестабилизированное напряжение постоянного тока подается на вход стабилизатора. Более низкое стабилизированное постоянное напряжение появляется на выходе стабилизатора.