Читаем Золотое сечение [Математический язык красоты] (Мир математики. т.1.) полностью

«Начала» Евклида

Шестая книга «Начал» Евклида содержит евдоксову теорию пропорций и планиметрию. В этой книге Евклид излагает теоремы подобия треугольников и построение третьего, четвертого и среднего пропорционального. Это первое описание золотой пропорции в математике. Оно дано в Определении 3 в наиболее классической форме, как «крайнее и среднее отношение», а в Предложении 30 Евклид приводит пример деления отрезка в золотой пропорции.

Книга VI

Определения

3. Говорится, что прямая делится в крайнем и среднем отношении, если целое относится к большему отрезку как больший отрезок к меньшему.

Предложения

Предложение 30. Данную ограниченную прямую рассечь в крайнем и среднем отношении.

Пусть данная ограниченная прямая будет АВ.

Тогда требуется рассечь прямую АВ в крайнем и среднем отношении. Построим на АВ квадрат ВС и приложим к АС равный ВС параллелограмм CD с избытком — фигурой AD, подобной ВС.

ВС же есть квадрат; значит, и AD квадрат. И поскольку ВС равен CD, то отнимем от обоих общее СЕ; значит, оставшийся параллелограмм BF равен оставшемуся параллелограмму AD. И оба равноугольны; значит, в BF и AD стороны при равных углах обратно пропорциональны; следовательно, как и FE к ED, то и АЕ к ЕВ. Но FE равна АВ, и ED равна АЕ. Значит, как и ВА к АЕ, так и АЕ к ЕВ. Но АВ больше АЕ; значит, и АЕ больше ЕВ.

Значит, прямая АВ рассечена в Е в крайнем и среднем отношении, и больший ее отрезок АЕ.

Хотя именно в шестой книге рассказывается о золотом сечении, Евклид уже упоминал эту пропорцию в предложении 11 второй книги, где он пытается решить геометрическим способом уравнение (а — х) = х2. Фактически это предложение аналогично предложению 30 из шестой книги, отличие лишь в терминологии. Можно сказать, что предложение 11 второй книги является первым предложением, в котором появляется золотое сечение, но автор, похоже, хотел уделить этим вопросам больше внимания позже. Во второй книге Евклид скрывает их под задачей о прямоугольниках. В любом случае, он этим демонстрирует, что любая задача, связанная с пропорциональными отрезками, может быть сформулирована как задача о прямоугольниках.

Книга II

Предложение 11. Данную прямую рассечь так, чтобы прямоугольник, заключенный между целой и одним из отрезков, был равен квадрату на оставшемся отрезке.

Пусть данная прямая будет АВ.

Следовательно, требуется АВ рассечь так, чтобы прямоугольник, заключенный между целой и одним из отрезков, был равен квадрату на оставшемся отрезке.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное