Шестая книга «Начал» Евклида содержит евдоксову теорию пропорций и планиметрию. В этой книге Евклид излагает теоремы подобия треугольников и построение третьего, четвертого и среднего пропорционального. Это первое описание золотой пропорции в математике. Оно дано в Определении 3 в наиболее классической форме, как «крайнее и среднее отношение», а в Предложении 30 Евклид приводит пример деления отрезка в золотой пропорции.
Книга VI
Определения
3. Говорится, что прямая делится в крайнем и среднем отношении, если целое относится к большему отрезку как больший отрезок к меньшему.
Предложения
Предложение 30. Данную ограниченную прямую рассечь в крайнем и среднем отношении.
Пусть данная ограниченная прямая будет АВ.
Тогда требуется рассечь прямую АВ в крайнем и среднем отношении. Построим на АВ квадрат ВС и приложим к АС равный ВС параллелограмм CD с избытком — фигурой AD, подобной ВС.
ВС же есть квадрат; значит, и AD квадрат. И поскольку ВС равен CD, то отнимем от обоих общее СЕ; значит, оставшийся параллелограмм BF равен оставшемуся параллелограмму AD. И оба равноугольны; значит, в BF и AD стороны при равных углах обратно пропорциональны; следовательно, как и FE к ED, то и АЕ к ЕВ. Но FE равна АВ, и ED равна АЕ. Значит, как и ВА к АЕ, так и АЕ к ЕВ. Но АВ больше АЕ; значит, и АЕ больше ЕВ.
Значит, прямая АВ рассечена в Е в крайнем и среднем отношении, и больший ее отрезок АЕ.
Хотя именно в шестой книге рассказывается о золотом сечении, Евклид уже упоминал эту пропорцию в предложении 11 второй книги, где он пытается решить геометрическим способом уравнение (а — х) = х2. Фактически это предложение аналогично предложению 30 из шестой книги, отличие лишь в терминологии. Можно сказать, что предложение 11 второй книги является первым предложением, в котором появляется золотое сечение, но автор, похоже, хотел уделить этим вопросам больше внимания позже. Во второй книге Евклид скрывает их под задачей о прямоугольниках. В любом случае, он этим демонстрирует, что любая задача, связанная с пропорциональными отрезками, может быть сформулирована как задача о прямоугольниках.
Книга II
Предложение 11. Данную прямую рассечь так, чтобы прямоугольник, заключенный между целой и одним из отрезков, был равен квадрату на оставшемся отрезке.
Пусть данная прямая будет АВ.
Следовательно, требуется АВ рассечь так, чтобы прямоугольник, заключенный между целой и одним из отрезков, был равен квадрату на оставшемся отрезке.