Читаем Золотой билет полностью

Жителям долгое время не давал покоя вопрос: можно ли посетить все районы города, проходя по каждому мосту ровно один раз? В 1735 году знаменитый математик Леонард Эйлер придумал, как изобразить задачу в виде схемы (см. рис. 3.9).


Рис. 3.9. Схема Эйлера


Очень похоже на игру со скипетром, и критерий существования решения здесь тот же; единственное отличие заключается в том, что узами дружбы связаны уже не дети, а районы города – Северный, Восточный, Южный и Остров. Эйлер доказал, что пройти по каждому мосту ровно один раз невозможно, поскольку во всех районах города количество мостов нечетно.

Так и выяснилось, что задача о семи мостах не имеет решения. В память об этом в игре со скипетром любой подходящий путь (а их бывает несколько) называется эйлеровым. Эйлеров путь можно искать по-разному, в том числе и простым перебором, однако при увеличении количества участников число вариантов заметно возрастает. Дети в Королевстве первым делом пересчитывают игроков с нечетным числом друзей, чтобы понять, существует ли вообще решение; если оно существует, то найти искомый путь уже не составляет особого труда. Поиск эйлерова пути – еще один пример задачи из класса P, т. е. задачи, для которой существует эффективный алгоритм.


Рис. 3.10. Передай скипетр – 2: решение есть


Постепенно дети подрастают. Играть становится все легче и легче; в конце концов «Передай скипетр» надоедает им, и тогда они начинают играть в ее вариацию, которую кто-то, не мудрствуя лукаво, окрестил «Передай скипетр – 2». Правила игры следующие:

1. Палку можно передавать только друзьям.

2. Все игроки, кроме первого, получают палку ровно один раз; в конце палка возвращается к первому игроку.

Для представленной ниже схемы дружеских связей решение может быть таким: Дэвид передает скипетр Барбаре, Барбара – Эрику, Эрик – Алексу, Алекс – Кэти, а Кэти возвращает его Дэвиду.

А вот для следующей схемы решения, как выяснилось, не существует.


Рис. 3.11. Передай скипетр – 2: решения нет


Новые правила выглядят проще. Поначалу детям даже кажется, что вторая игра легче, чем первая, однако при увеличении числа участников играть в нее становится намного сложнее. В 1857 году математик Уильям Роуэн Гамильтон изобрел головоломку «Икосиан», или «Путешествие по додекаэдру», в которой нужно было выполнить обход вершин правильного двенадцатигранника, или додекаэдра.


Рис. 3.12. «Путешествие по додекаэдру»


Эта головоломка – частный случай второй игры со скипетром. Представьте, что вершины додекаэдра соответствуют жителям Королевства, а ребра соединяют друзей, – и получите самую настоящую схему дружеских связей. Сумеете сами обойти додекаэдр и решить вторую игру со скипетром? Ответ вас ждет в конце главы.

Любой путь, удовлетворяющий условиям игры, в честь создателя головоломки называется гамильтоновым циклом.


Рис. 3.13. Додекаэдр


Раскраска домов

В Королевстве вышел новый закон: по причинам эстетического характера соседние дома должны быть выкрашены в разные цвета (независимо от того, дружат их хозяева или враждуют). Нововведение вызвало волну общественного протеста: жители не желали тратить свои кровные на краски и рабочих. В результате правительство согласилось оплатить все счета при условии, что оно само выберет цвета.

Расходы на краски предстояли огромные. Правительственные чиновники стремились минимизировать количество различных цветов, поскольку каждый сэкономленный цвет позволял сохранить миллионы долларов. Королевскому технологическому выделили грант на поиск наименьшего количества цветов, достаточного для правильной раскраски всех домов, т. е. раскраски, при которой любые два соседних дома имеют разные цвета.

Ни у кого из жителей число соседей не превышает двенадцати. При самом примитивном подходе – красить каждый следующий дом в цвет, отличный от цветов всех его соседей, – потребуется тринадцать различных цветов. Однако в институте сумели обойтись малой кровью.

Когда в 1852 году английский (а впоследствии южноафриканский) математик Франсис Гатри раскрашивал карту графств Англии, ему пришло в голову, что любую карту можно раскрасить в четыре цвета таким образом, чтобы любые две смежные области получили разные цвета. Его гипотеза широко обсуждалась в математической среде; через некоторое время появились целых два доказательства: первое в 1879 году выдвинул Альфред Кемпе, второе – годом позже – Питер Тэт. Оба были опровергнуты, хотя второе продержалось одиннадцать лет, прежде чем в нем нашлись существенные изъяны. После этого проблема раскраски карт почти сто лет оставалась открытой.

Перейти на страницу:

Похожие книги

Последний рассвет
Последний рассвет

На лестничной клетке московской многоэтажки двумя ножевыми ударами убита Евгения Панкрашина, жена богатого бизнесмена. Со слов ее близких, у потерпевшей при себе было дорогое ювелирное украшение – ожерелье-нагрудник. Однако его на месте преступления обнаружено не было. На первый взгляд все просто – убийство с целью ограбления. Но чем больше информации о личности убитой удается собрать оперативникам – Антону Сташису и Роману Дзюбе, – тем более загадочным и странным становится это дело. А тут еще смерть близкого им человека, продолжившая череду необъяснимых убийств…

Александра Маринина , Алексей Шарыпов , Бенедикт Роум , Виль Фролович Андреев , Екатерина Константиновна Гликен

Фантастика / Приключения / Прочие Детективы / Современная проза / Детективы / Современная русская и зарубежная проза