Однако у многих математиков всегда присутствует желание свести все к единым, по возможности целочисленным решениям и, соответственно, к единой формуле.
Конечно, идеальное представление позволяет более или менее адекватно представить окружающую нас Вселенную, но не всегда и не везде действуют законы простых чисел. В частности, в особых точках (нуле или разрыве функции) решения всегда значительно усложняются. Математически это ведет к неоднозначности результатов и по формальным признакам дает возможность спекулятивных (как толковали «многозначность» в средневековье) решений. Но при математических преобразованиях теряется смысл этих решений. Нуль и единица, относящиеся к любому конкретному объекту, обозначают всего лишь его отсутствие или этап для дальнейшего счета. Поэтому разговор о стремящемся к нулю или равном нулю объекте физической Вселенной представляется уходом в ту область, откуда (при определенных граничных условиях) может появиться либо этот предполагаемый объект, либо нечто иное, либо вообще ничего.В области вблизи единицы тоже не для всех объектов ясно, что надо прибавить или убавить для того, чтобы исследуемый объект оставался именно тем, чем мы его считаем.
В гипотезе, естественно, есть определенный практический смысл, но возникает вопрос о полноте отображения граничных условий при исчезающе малых их значениях или вообще при их отсутствии, а это уже — типичный случай выбора стратегии аналогово-цифрового аппарата.
Гипотеза Пуанкаре
Если мы натянем резиновую ленту вокруг поверхности яблока, то затем мы можем медленно стянуть ее вниз, в точку без разрыва, и не допуская соскальзывания с поверхности. Если же мы представим себе, что в другой руке такая же лента натянута вокруг бублика, то понятно, что невозможно стянуть резиновую ленту к такой же точке без разрыва ленты или
разрушения бублика. Мы говорим, что поверхность яблока «просто соединена» (непрерывна), а поверхность бублика — нет. Пуанкаре больше ста лет назад понял, что двухмерная сфера существенно характеризуется этим свойством «простого соединения», и поставил вопрос о трехмерной сфере (набор точек в четырехмерном пространстве на одинаковом расстоянии от рассматриваемой фигуры-оригинала). Этот вопрос очень труден, и математики бьются над его решением до сих пор.Предположение Ходжи
В XX веке математики открыли эффективные пути исследования форм сложных объектов. Основным является вопрос о том, до какой степени сложности мы можем приближать предлагаемые объекты, соединяя их вместе из простых
геометрических блоков увеличивающихся размеров. Эта технология обещает быть очень сильной и должна привести к образованию мощных инструментов, которые позволят математикам достичь большого прогресса в каталогизации всего многообразия объектов исследования. К сожалению, геометрические начала этого процесса я рамках данного представления остаются неясными. В некоторых случаях приходится подставлять куски, не имеющие никакой геометрической интерпретации. В предположении Ходжи утверждается, что для каждого вида пространства, определяемого алгебраическим многообразием, фигуры, называемые кругами Ходжи, рационально-линейно формируются из геометрических фигур, называемых алгебраическими кругами.