Тепло поступает из океанов в атмосферу в тропических областях путем теплопередачи и в виде скрытой теплоты испарения. Атмосферная циркуляция поддерживается нагревом в низких широтах и потерей тепла в высоких. Тропические широты, таким образом, — один из важнейших районов, где формируются изменения в распределении и интенсивности циркуляции атмосферы. Но в океане, где очень велика теплоемкость, возникают инерционные силы, также влияющие на атмосферу. При этом как бы уменьшается взаимодействие, появляется устойчивость, особенно в крупных масштабах в океанах. По выражению А. А. Аксенова, ключ к долгосрочному прогнозу погоды находится в океане. На Втором Международном океанографическом конгрессе в Москве (1966 г.) приводился такой пример. Связь циркуляции атмосферы над Лабрадорским течением и проливом Дэвиса с количеством айсбергов дает возможность знать в марте, сколько айсбергов появится в районе Ньюфаундленда с апреля по июнь. Связь между интенсивностью атмосферной циркуляции в Северной Атлантике и аномалиями температуры воды позволяет предполагать волновую природу переноса тепла в замкнутой циркуляции вод Северной Атлантики, его периодичность. Последняя может быть использована в сверхдолгосрочных прогнозах, порядка 2–3 и 4–5 лет.
В современных теоретических моделях учитывают и передачу энергии ветра, и неоднородность поля плотности самих океанических вод, поддерживаемого климатическими процессами. Внешний фактор циркуляции ветра как бы накладывается на неоднородность поля температуры, солености, а следовательно, и циркуляции вод. В 60-х — первой половине 70-х годов расширились исследования в области взаимодействия океана и атмосферы. К этому времени уже стала совершенно очевидной необходимость установки сети буйковых станций, работающих в автоматическом режиме, создания кораблей погоды. Начался быстрый рост и качественное обновление отечественного научного флота. Появились суда типа «Академик Курчатов», дающие возможность вести наблюдения в Мировом океане длительное время и на больших пространствах. Так началось в конце 60-х годов практическое осуществление натурного эксперимента по проблеме взаимодействия, исследования трансформации энергии и структуры пограничных слоев океана и атмосферы. Одновременно с экспериментальным направлением (и благодаря ему) интенсивно развиваются теоретические взгляды на океан и атмосферу, как на единую систему.
В конце 70-х годов в СССР начаты специальные экспедиции по изучению тропических циклонов и связанных с ними явлений в тропической зоне Тихого океана. Напомним, что словом «тайфун» называются тропические циклоны, зарождающиеся в районе Южно-Китайского моря, Филиппинских островов и над океаном. Тайфуны движутся к берегам Индокитайского и Корейского полуостровов, а затем, меняя направление, через южные острова — к Японии. В редких случаях тайфуны захватывают Приморский край и, трансформировавшись, доходят до берегов Камчатки. Наиболее часты тайфуны в конце лета и осенью.
Изучение тропических циклонов, их зарождение, эволюция и прогнозирование — очень важная и малоизученная проблема. Пока никто не может сказать, по какой причине (или причинам) при 10 облачных образованиях только из одного рождается тропический циклон. Многие задачи в этой области еще остаются неясными. Разработан ряд способов для изучения структуры атмосферы над океаном, в частности над тропической зоной: сбрасывание с самолетов специальных топ-зондов, наблюдения на прибрежных станциях, островах и аэрологических полигонах, образованных группой научно-исследовательских судов. Такие полигоны организовывались в экспедициях «ТРОПЭКС-74», «Тайфун-75», «Муссон-77». Работы этого направления продолжаются и развиваются.
Термическое взаимодействие
Известный русский климатолог и географ А. И. Воейков еще в 1884 г. писал, что важнейшей задачей физических наук является ведение приходо-расходной книги солнечного тепла, получаемого Землей с ее воздушной и водяной оболочкой. Актуальность данной проблемы не утрачена за столетие, пожалуй, она возросла еще больше.
За 5 млрд. лет существования Земли Солнце непрерывно обеспечивает ее колоссальным потоком энергии, циркулирующей во внешних оболочках нашей планеты.
На поддержание циркуляции в атмосфере и океане расходуется 0,49 кал/см2 * мин. Радиационный баланс подстилающей поверхности имеет решающее значение для атмосферной циркуляции.