Сначала высказывались опасения, что взрыв реактора причинит такой же ущерб, что и взрыв атомной бомбы. Для того чтобы доказать, что взрыв реактора происходит лишь в условиях, отличающихся от обычных, и не представляет серьезной опасности для живущего no соседству с атомным заводом населения, американцы намеренно взорвали один так называемый «кипящий» реактор. Действительно, произошел взрыв, который мы можем охарактеризовать как «классический», то есть неядерный; это лишний раз доказывает, что ядерные реакторы могут строиться вблизи населенных пунктов без особой опасности для последних.
В процессе деления ядер выделяется определенная энергия, которая передается продуктам распада и образующимся нейтронам. Эта энергия в результате многочисленных столкновений нейтронов превращается в тепловую, поэтому для того, чтобы предупредить быстрый выход реактора из строя, тепло необходимо отводить. В реакторах, предназначенных для получения радиоактивных изотопов, это тепло не используется, в реакторах же, предназначенных для производства энергии, оно становится, наоборот, основным продуктом. Охлаждение может осуществляться при помощи газа или воды, которые циркулируют в реакторе под давлением по специальным трубкам и потом охлаждаются в теплообменнике. Отданное тепло может использоваться для нагревания пара, вращающего соединенную с генератором турбину; подобное устройство будет представлять собой атомную электростанцию.
Для того чтобы избежать вредного воздействия нейтронов, могущих вылететь за пределы реактора, и предохранить себя от испускаемого в процессе реакции гамма-излучения, необходима надежная защита. Ученые подсчитали, что реактор мощностью в 100 тыс. квт выделяет такое количество радиоактивных излучений, что человек, находящийся от него на расстоянии 100 м, получит за 2 мин. смертельную дозу. Для обеспечения защиты персонала, обслуживающего реактор, строятся двухметровые стены из специального бетона со свинцовыми плитами.
Первый реактор был построен в декабре 1942 года итальянцем Ферми. К концу 1955 года в мире насчитывалось около 50 ядерных реакторов (США —2 1, Англия — 4, Канада — 2, Франция — 2). К этому следует добавить, что к началу 1956 года было запроектировано еще около 50 реакторов для исследовательских и промышленных целей (США — 23, Франция — 4, Англия — 3, Канада — 1).
Типы этих реакторов очень разнообразны, начиная от реакторов на медленных нейтронах с графитовыми замедлителями и природным ураном в качестве топлива до реакторов, работающих на быстрых нейтронах и использующих в качестве топлива уран, обогащенный плутонием или ураном 233, получаемым искусственным путем из тория.
Кроме этих двух противоположных типов, существует еще целый ряд реакторов, различающихся между собой либо составом ядерного горючего, либо типом замедлителя, либо теплоносителем.
Очень важно отметить, что, хотя теоретическая сторона вопроса в настоящее время хорошо изучена специалистами во всех странах, в практической области различные страны не достигли еще одинакового уровня. Впереди других стран идут США и Россия. Можно утверждать, что будущее атомной энергии будет зависеть в основном от прогресса техники.
II. Что можно получать в ядерном реакторе?
Ядерный реактор позволяет:
— производить плутоний;
— вырабатывать тепловую энергию;
— получать радиоактивные изотопы.
Реакторы, называемые первичными[10], служат для получения плутония, поэтому тепло является в них лишь побочным продуктом. Обычно считают, что в таком реакторе на каждые 1000 квт мощности производится в день 1 г плутония. Таким образом, Маркульский реактор G-1, имеющий мощность 40 тыс. квт, должен ежегодно давать около 15 кг плутония.
Так называемые вторичные реакторы предназначаются в основном для производства тепловой энергии; получаемый при этом плутоний является побочным продуктом.
Как мы уже говорили выше, энергия, высвобождающаяся в результате деления ядер урана, выступает в форме тепловой энергии. Последняя в определенных условиях может либо превращаться в электрическую, либо непосредственно использоваться в качестве источника движения в транспортных силовых установках.
Рассмотрим в общих чертах эти основные способы использования ядерной энергии.
а) Атом как «источник электроэнергии».
Мощность ядерных реакторов измеряется в киловаттах. Но это, так сказать, тепловые киловатты. Чтобы перевести их в электрические, нужно применить формулу Карно с учетом качества производимого тепла, которое зависит от температуры поступающей из реактора жидкости.