Теперь осталось связать эти два представления между собой. Поскольку гипотетический эфир не участвует в движении тел, значит, он находится в состоянии абсолютного покоя, а следовательно, и является олицетворением абсолютного пространства, относительно которого движутся все тела. Значит, и Земля движется относительно эфира. И движется, согласно законам планетарной механики, с большой скоростью. Следовательно, скорость световых волн, движущихся параллельно движению Земли, должна отличаться от скорости световых волн, движущихся перпендикулярно ему. Такой гипотетический эффект назвали «эфирным ветром». Еще в начале XIX века совершались попытки экспериментально обнаружить эфирный ветер. Сделать этого не удалось, как тогда казалось, из-за недостаточного качества приборов. Но в 1888 году американский физик Альберт Майкельсон провел более точный эксперимент и. тоже не обнаружил эффекта эфирного ветра, а точнее, доказал его отсутствие. Ирландец Джон Фитцджеральд, а вслед за ним голландец Хенрик Антон Лоренц попытались спасти гипотезу эфира, предположив, что быстро движущиеся тела уменьшаются в направлении движения. К 1904 году Лоренц, для того чтобы уничтожить противоречия между уравнениями Максвелла и результатами опыта Майкельсона, разработал математический аппарат, позволяющий решить проблему, отталкиваясь от данного предположения. В основе этого решения лежали преобразования системы координат и времени какого-либо события при переходе от одной системы отсчета в другую. Позже эти преобразования были названы по имени их автора. Однако Лоренц не решился опровергнуть закон о сложении перемещений и скоростей, лежащий в основе ньютоновской физики. Поэтому он попытался ввести в свои расчеты силы, вызывающие сокращение быстро движущихся тел.
Теперь вернемся назад, в еще доньютоновские времена. Как мы уже писали, на рубеже XVI–XVII веков Галилео Галилей сформулировал принцип относительности движения. На этот принцип, как на следствие своих законов, указывал и Ньютон. Француз Анри Пуанкаре обобщил этот принцип, распространив его не только на движение, но и на другие физические процессы. Сначала, в 1899 году, Пуанкаре сформулировал принцип относительности в качестве рабочей гипотезы, а затем, в 1904 году, — в качестве предположения. В 1905 году, почти одновременно с Эйнштейном, Пуанкаре отправил в научные журналы две статьи под одинаковым названием «О динамике электрона». В первой из них он исправил ошибку, допущенную Лоренцом, а во второй развил математические следствия принципа относительности. И о Лоренце, и о Пуанкаре часто пишут, что они близко подошли к созданию теории относительности. Но, наверное, правильнее будет сказать, что эти ученые рассматривали свою деятельность, как некое физико-математическое моделирование. Чтобы воспринять теорию относительности как физическую реальность, требовался менее консервативный и более смелый человек. Им и стал Эйнштейн. Писатель Чарлз Перси Сноу в своей книге «Эйнштейн» писал: «...статья излагала специальную теорию относительности, соединявшую в одно целое материю, пространство и время.
В этой статье не было ни цитат, ни ссылок на авторитеты. Да и остальные статьи написаны в такой манере, которая не походила на работы других физиков-теоретиков. В эйнштейновских статьях было мало математических расчетов и много логического анализа. Приводимые в статьях доводы выглядели несокрушимыми, а выводы — совершенно невероятные выводы! — казалось, возникали с величайшей легкостью. К этим выводам он пришел, пользуясь силой и логикой своей мысли, не прислушиваясь к мнению других. Это кажется поразительным, но именно так и создавалась большая часть его трудов.
Можно с уверенностью сказать: пока существует физика, ни у кого больше не хватит сил выступить с тремя такими работами в течение одного года».