Читаем 10 заповедей нестабильности полностью

Английский математик Эндрю Уайлс позднее вспоминал, как он в десятилетнем возрасте впервые познакомился с теоремой Ферма по книжке из сельской библиотеки: «…она казалась удивительно простой…, но в книге утверждалось, что ее никто не может доказать в течение 300 лет. Мне сразу захотелось найти решение». Проблема выглядит исключительно простой: поскольку число 2 ничем, собственно, не выделяется в бесконечном ряду других натуральных чисел, совершенно непонятно, почему только это значение может создавать пифагоровы триады чисел. Долгое время (включая и время, затраченное на серьезную академическую деятельность) жизнь не позволяла Уайлсу заняться доказательством полюбившейся теоремы постоянно и целенаправленно. Одна из причин, кстати, состояла в том, что ни один серьезный студент-математик не мог себе даже позволить открыто заявить коллегам об интересе к считавшейся давно недоказуемой теореме Ферма (представьте себе, как отнесутся сегодня астрофизики к аспиранту, который захочет доказать им, что красного смещения не существует). Поэтому Уайлс сначала весьма благоразумно защитил в Кембридже докторскую диссертацию на классическую тему «применение теории чисел для анализа эллиптических кривых», перебрался в Принстонский университет (США) и лишь затем объявил о своем желании всерьез заняться проблемами и задачами, связанными с теоремой Ферма.

Когда в XIX веке известный венгерский математик Янош Бойяи (1802-1860) решил посвятить свою деятельность проверке постулата Евклида о параллельных прямых, его отец (тоже известный математик Фаркаш Бойяи) прислал сыну письмо с предостережением, которое давно вошло во многие книги по истории математики: «… Ради Бога, прекрати заниматься этой задачей,…она может занять тебя целиком, погубить здоровье, лишить мысленного покоя и жизненного счастья…». Опасности такого рода не испугали Уайлса в начале его исследований, а удача приходит, как известно, только к тем, кто рискует. Поэтому не стоит удивляться, что однажды в случайном разговоре с коллегой он узнал, что кто-то обнаружил связь между мучившей его с детства теоремой Ферма и одним из новейших математических открытий. Новость поразила и обрадовала Уайлса, который позднее написал: «…я вдруг почувствовал свое преимущество в том, что занимаюсь проблемой, которую все остальные либо игнорируют, либо считают неразрешимой». Дальнейшая история проблемы изложена в нескольких известных книгах (отметим лишь «Великую теорему Ферма» Саймона Сингха и «Последнюю теорему Ферма» Амира Д. Акцеля), где подробно описано, как профессор Принстон-ского университета «ушел в подполье», сумел за короткое время, буквально скрываясь от коллег, объединить целый ряд сложных математических результатов (до этого казавшихся всем разобщенными) и довести доказательство теоремы Ферма до блестящего конца. Позднее Уайлс так объяснял свое поведение: «…наличие многочисленных зрителей лишь отвлекает от работы, тем более что я давно знал, какой ажиотаж возникает при одном лишь упоминании теоремы Ферма».

***

Используя голливудский жаргон, можно сказать, что в 1954 г. два молодых японских математика Горо Симура и Ютака Танияма буквально «спелись» в библиотеке Токийского университета, заказав одновременно одну и ту же статью из немецкого математического журнала. Позднее они стали знаменитыми, разработав так называемую «гипотезу Таниямы-Симуры», а некоторая театральность и мелодраматичность их встречи позднее откликнулись трагической судьбой самого Таниямы (изящно сложенный и известный богемным поведением Танияма покончил с собой в 1958 г., вслед за самоубийством своей невесты).

Этим двум великолепным математикам удалось развить теорию так называемых модулярных форм, т. е. некоторых симметричных объектов в четырехмерном пространстве-времени, открытых еще в XIX веке и имеющих самые разнообразные виды и размеры. Их нельзя изобразить или представить в привычном трехмерном пространстве, что, естественно, не мешает проведению тщательного математического описания. Такие формы могут быть представлены в виде «решеток», массивов или рядов, члены которых зависят от характеристических параметров, причемчисло последних может изменяться от нуля до бесконечности. Предложенных кратких и несложных объяснений читателю должно хватить для понимания общих результатов, которыми японские математики ошеломили всех своих коллег.

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература