Читаем 100 миллиардов солнц: Рождение, жизнь и смерть звезд полностью

Межзвездное пространство нашей Галактики нельзя считать абсолютно пустым: в нем существуют скопления газа и пыли. В гл. 12 мы увидим, что из межзвездного газа могут образовываться новые звезды. Частично межзвездный газ остался еще со времен формирования нашей Галактики. Впоследствии из этого газа образовались все звезды, которые, как мы видели, «возвращают» часть своего вещества в межзвездное пространство. Таким образом, межзвездное вещество смешано с газами, которые звезды потеряли за время своей жизни. Зародыши пылевых частиц образуются путем конденсации под действием звездного ветра. Так, например, от звезды R Северной Короны разлетаются облака черной пыли, которые ослабляют ее свет. В межзвездном пространстве на зародышах пылевых частиц постепенно осаждаются атомы газов и образуют твердую оболочку частицы. Так происходит рост зародышей пылевых частиц. Эти частицы растут до тех пор, пока не разрушатся. Разрушение частиц может произойти из-за взаимного соударения, столкновения с высокоэнергетичными частицами космических лучей, или за счет испарения, если они окажутся поблизости от горячей звезды. Межзвездное вещество постоянно пополняется газами, «улетевшими» с поверхности звезд. Поэтому химический состав межзвездного вещества постепенно изменяется. Это вещество обогащается тяжелыми элементами, образовавшимися в недрах звезд. Таким образом, звезды существенным образом определяют свойства межзвездного вещества, из которого в свою очередь образуются новые звезды.

При взрывах сверхновых такое обогащение межзвездной материи происходит особенно быстро, поскольку, как мы увидим в гл. 11, во время таких взрывов в межзвездное пространство выбрасывается много тяжелых элементов. Скорости разлета части вещества при взрыве сверхновой настолько велики, что оно быстро заполняет весь объем нашей Галактики. Это частицы вездесущего космического излучения, которое мы наблюдаем и у поверхности Земли.

То, что после взрыва сверхновой остаются и другие объекты, кроме расширяющегося светящегося облака и космического излучения, впервые стало известно в 1968 году.

<p>Глава 8</p><p>Пульсары, которые не пульсируют</p>

Сообщение, опубликованное в феврале 1968 года в английском журнале «Nature», было столь удивительным, что его тут же подхватила вся мировая пресса. Группа ученых в Кембридже, руководимая Энтони Хьюишем, извещала о том, что ей удалось принять радиосигналы из глубин Вселенной.

<p>Новый радиотелескоп в Кембридже</p>

После второй мировой войны начался расцвет радиоастрономии. Космический газ — межзвездное вещество — обладает способностью испускать и поглощать излучение в области радиочастот. Подобно свету, это излучение проходит сквозь земную атмосферу и может служить дополнительным источником информации о Вселенной. Исследуя космическое радиоизлучение, можно получать сведения о свойствах межзвездного вещества в нашей Галактике; удается также принимать и анализировать радиоизлучение межзвездного газа в других звездных системах. Галактики, дающие особенно интенсивное радиоизлучение, получили название радиогалактик.

Приходящее к нам радиоизлучение испытывает влияние вещества, выбрасываемого Солнцем и движущегося в межпланетном пространстве к границам Солнечной системы (т. е. влияние солнечного ветра, о котором шла речь в предыдущей главе). Наблюдаемые из-за этого временные флуктуации радиоизлучения во многом подобны мерцанию света звезд, обусловленному движениями воздушных масс в атмосфере.

Именно для исследования подобных флуктуации, обусловленных межпланетным веществом, и был предназначен радиотелескоп, строительство которого было начато в Кембридже в 60-е годы. На площади в два гектара (где уместилось бы 57 теннисных кортов) было установлено более 2000 отдельных антенных элементов. Поскольку с помощью этого антенного поля предполагалось исследовать флуктуации излучения радиоисточников, вызванные солнечным ветром, приемное устройство было рассчитано на регистрацию быстрых изменений приходящего радиоизлучения. Прежние радиотелескопы не давали такой возможности, и поэтому кембриджский радиотелескоп как будто специально был приспособлен для открытия быстропеременных сигналов от пульсаров — открытия, которое отодвинуло на второй план ту задачу, ради которой радиотелескоп был построен: исследование флуктуации радиоизлучения, обусловленных солнечным ветром.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже