В истории ядерной физики уже бывали случаи, когда открытие, сделанное «на кончике пера» теоретиком, затем блестяще подтверждалось на практике. Классическим считается случай открытия позитрона. Сначала существование этой частицы, которая является своего рода «двойником», или античастицей, электрона, было теоретически предсказано английским физиком-теоретиком Паулем Дираком в 1931 году на основании выведенных им уравнений. А год спустя американский физик К.Д. Андресон экспериментально обнаружил эту частицу – «двойника» электрона, или античастицу с положительным зарядом – в космических лучах.
А вот история с бозоном Хиггса такова. Существование этой частицы было предсказано британским профессором Питером Хиггсом в 1966 году как последний недостающий элемент современной теории элементарных частиц, которую еще называют Стандартной моделью. По мнению Хиггса, эта гипотетическая частица должна отвечать за массы всех других элементарных частиц. Так называемый хиггсовский механизм, который объясняет происхождение массы, был предложен в 1962 году американским физиком Филиппом Андерсоном, а двумя годами позже уточнен тремя независимыми группами ученых – Франсуа Англером и Робертом Браутом, Питером Хиггсом и Джеральдом Гуральником, а также Карлом Хагеном и Томом Кибблом.
Почти два десятилетия назад физик Национальной ускорительной лаборатории имени Энрико Ферми, нобелевский лауреат Леон Ледерман в своей статье как бы в шутку назвал бозон Хиггса «проклятой частицей» (goddamn particle), поскольку она никак не поддавалась идентификации. Однако редактору статьи такое название не понравилось, и он переименовал ее в «божественную частицу» (god particle). Так с легкой руки редактора название «частица Бога» и закрепилось в СМИ и околонаучной литературе.
Зачем понадобилась эта частица физикам? В самом упрощенном виде суть рассуждений здесь такова. Когда Вселенная начала остывать после Большого Взрыва, сформировалась некая гипотетическая сила, известная еще как поле Хиггса. Материальными носителями этой силы, ее квантами, и должны быть, по идее, бозоны Хиггса.
Именно это поле, а не бозон объясняет появление массы у частиц, сформировавших атомы. Без его существования частицы просто пронизали бы космос со световой скоростью. А согласно теории Альберта Эйнштейна, частицы, имеющие массу, разгоняться до скорости света не могут.
То, как работает поле Хиггса, ученые попытались рассказать журналистам на пресс-конференции, созванной по этому поводу в ЦЕРНе 4 июля 2012 года. «Вот вас здесь целая толпа, – пояснил “на пальцах” суть дела один из выступавших. – Представьте, что в эту комнату вошел сам Питер Хиггс. Но пока вы не знаете, кто он такой, и профессор может спокойно передвигаться по комнате. Но как только кто-то из вас узнает его, тотчас вокруг профессора образуется плотная толпа, пробиться через которую ученому уже можно будет с большим трудом. Точно так же и наличие поля Хиггса мы можем обнаружить только по пролету бозона Хиггса, за которым и шла охота столько времени»…
Тут, наверное, стоит привести некоторые пояснения. Все охотники прекрасно знают: чтобы поймать любого, а уж тем более редкого зверя необходимы специализированные ловушки. Та, что предназначена, например, для поимки бобров, не годится для ловли зайцев. А потому исследователи потратили немало усилий и еще больше денег (так только БАК обошелся в сумму порядка 10 млрд евро), чтобы создать такие ловушки.
Сегодня их в мире две. Это тэватрон в лаборатории имени Энрико Ферми (Фермилаб) в США и БАК в ЦЕРНе близ Женевы. Американские физики из Фермилаба в некотором роде «выступили на разогреве» у европейских коллег, представив им окончательные результаты своих более чем десятилетних поисков бозона Хиггса. По их данным, если частица существует, то ее масса должна находиться в интервале от 115 до 135 гигаэлектронвольт.
Один из участников этой работы, наш соотечественник Дмитрий Денисов сказал так: «Мы на тэватроне знаем, как открывать частицы. Мы открыли топ-кварк, шесть новых барионов (частиц, состоящих из новых комбинаций кварков. –
Денисов также добавил, что большой вклад в этот результат внесли и российские ученые. Так, в одном из экспериментов было задействовано 100 представителей Объединенного института ядерных исследований (ОИЯИ) в Дубне, Института физики высоких энергий (ИФВЭ) в Протвине, МГУ имени Ломоносова, Института теоретической и экспериментальной физики (ИТЭФ) и Петербургского института ядерной физики имени Константинова (ПИЯФ).