На чем же основано действие световодов? Из оптики хорошо известно: если направить световой луч из более плотной среды в менее плотную (например, из воды или стекла в воздух), то значительная часть его отражается обратно от границы двух сред. При этом чем меньше угол падения луча, тем большая часть светового потока окажется отраженной. Путем эксперимента можно подобрать такой пологий угол, при котором отражается весь свет и лишь ничтожная его часть попадает из более плотной среды в менее плотную. Свет при этом оказывается словно заключенным в плотной среде и распространяется в ней, повторяя все ее изгибы. Этот эффект «удержания света» можно наблюдать на примере распространения света внутри струи воды, которую он не может покинуть, постоянно отражаясь от границы воды и воздуха. Точно так же происходит передача светового сигнала по оптическому стеклянному волокну. Войдя внутрь него, световой пучок распространяется в различных направлениях. Лучи, идущие под малым углом к границе двух сред, полностью отражаются от нее. Таким образом, оболочка прочно удерживает их, обеспечивая светонепроницаемый канал для передачи сигнала практически со скоростью света.
В идеальных световодах, изготовленных из абсолютно прозрачного и однородного материала, световые волны должны распространяться не ослабевая, но практически все реальные световоды более или менее сильно поглощают и рассеивают электромагнитные волны из-за своей непрозрачности и неоднородности. (Поглощение внешне проявляется как нагрев световода; рассеяние — это когда часть излучения покидает волокно.) Стекло, которое кажется таким прозрачным в окнах, витринах и биноклях, в действительности оказывается далеко не однородным. Это легко заметить, взглянув через торец листового стекла. При этом сразу становится видна его слабая голубовато-зеленая окраска. Исследования показывают, что эта окраска вызвана небольшим количеством железа и меди, содержащимся в стекле. Даже в самых чистых стеклах, изготавливаемых для астрономических и фотографических объективов, имеется большое количество окрашенных примесей. В первых световодах, изготовленных из такого стекла, потери энергии были очень велики (на 1 м световода терялось более 50% введенного в него света). Однако и при таком качестве удалось создать приборы, позволявшие пропускать свет через изогнутые каналы, наблюдать внутренние поверхности металлических полостей, изучать состояние внутренних органов человеческого тела и т.п. Но для создания магистральных линий связи такие световоды были малопригодны.
Понадобилось около десятилетия для того, чтобы создать лабораторные образцы волоконных световодов, способных передать на 1 км 1% введенной в них мощности света. Следующей задачей было изготовить из такого волокна световодный кабель, пригодный для практического применения, разработать источники и приемники излучения. Простейший волоконный световод представляет собой тонкую нить из прозрачного диэлектрика. Передаваемые световые волны идут под малыми углами к оси световода и испытывают полное внутреннее отражение от его поверхности. Но использовать такой световод можно только в лаборатории, так как незащищенная поверхность стекла в обычных условиях постепенно покрывается пылинками, на ней развивается множество дефектов: микротрещин, неровностей, которые нарушают условия полного внутреннего отражения света внутри волокна, очень сильно поглощают и рассеивают лучи. Существенные дополнительные потери возникают в местах контакта световода с опорами, поддерживающими незащищенный кабель.
Радикальное изменение ситуации было связано с созданием двухслойных световодов. Такие световоды состояли из световодной жилы, заключенной в прозрачную оболочку, показатель преломления которой был меньше, чем показатель преломления жилы. Если толщина прозрачной оболочки превосходит несколько длин волн передаваемого светового сигнала, то ни пыль, ни свойства среды вне этой оболочки не оказывают существенного влияния на процесс распространения световой волны в двухслойном световоде. Эти световоды можно покрывать полимерной оболочкой и превращать их в световедущий кабель, пригодный для практического применения. Но для этого необходимо создать высокое совершенство границы между жилой и прозрачной оболочкой. Наиболее простая технология изготовления световода состоит в том, что стеклянный стержень-сердцевина вставляется в плотно подогнанную стеклянную трубку с меньшим показателем преломления. Затем эта конструкция нагревается.
В 1970 году фирма «Корнинг гласс» впервые разработала стеклянные световоды, пригодные для передачи светового сигнала на большие расстояния. А к середине 70-х годов были созданы световоды из сверхчистого кварцевого стекла, интенсивность света в которых уменьшалась вдвое лишь на расстоянии 6 км. (Насколько прозрачно такое стекло, видно из следующего примера: если представить себе, что в окно вставлено сверхчистое оптическое стекло толщиной 10 км, то оно будет пропускать свет так же хорошо, как обычное оконное стекло сантиметровой толщины!)