Прежде чем опылить цветок гороха одного сорта другим, Мендель еще до созревания пыльцы обрывал с него тычинки. Позднее, когда рыльце было готово к опылению, ученый наносил на него пыльцу, взятую с цветков нужного сорта, а чтобы растения опылялись только отобранным материалом, выращивал их в специальном домике, недоступном для насекомых, или же надевал на цветки мешочки.
Сначала Грегор скрестил между собой растения с желтыми и зелеными семенами. В результате все гибриды первого поколения оказались желтыми и единообразными, независимо от того, из какого именно семени (желтого или зеленого) выросли материнские/отцовские экземпляры. Значит, оба родителя в равной степени способны передавать свои признаки потомству, сделал вывод Мендель. И сформулировал закон единообразия гибридов первого поколения (первый закон): при скрещивании чистых линий, обладающих взаимоисключающими признаками, все гибриды первого поколения будут иметь признак одного из родителей.
Единицу наследственности ученый назвал фактором (спустя десятилетия этот термин получил название «ген»). Признак, проявляющийся у гибридов первого поколения, обозначил доминантным, а тот, что подавляется, – рецессивным. Как оказалось, сочетание этих признаков дает предсказуемые схемы наследственности.
Далее ученый установил, что во втором поколении у 75 % особей проявляется доминантный признак, а у 25 % – рецессивный (расщепление 3:1). Эта закономерность получила название второго закона Менделя, или закона расщепления.
Третий же закон – независимого наследования признаков – был сформулирован в результате скрещивания растений, которые отличались уже и по цвету, и по текстуре семян. Первая чистая линия гороха имела желтые и гладкие семена, а вторая – зеленые и сморщенные. В итоге гибриды первого поколения получились желтыми и гладкими, а во втором, как и полагается, произошло расщепление: помимо желтых гладких и зеленых морщинистых семян образовались желтые сморщенные и зеленые гладкие варианты – произошла перекомбинация признаков. Следовательно, при дигибридном скрещивании расщепление по каждой паре признаков происходит независимо от других свойств. Это и есть третий закон Менделя.
В самом конце эксперимента ученый предположил, что открытые им законы распространяются на все живое, ибо «единство плана развития органической жизни стоит вне сомнения».
За восемь лет Мендель вырастил и скрестил гибриды 30 000 растений, обследовал 20 000 их потомков, проделал 10 000 опытов и рассмотрел в лупу более 7000 горошин. В ходе экспериментов он разработал метод дискретного анализа наследования признаков и заложил научные основы генетики, открыв следующие явления:
1. Каждый наследственный признак определяется отдельным наследственным фактором, задатком, геном.
2. Гены сохраняются в чистом виде в ряде поколений, не утрачивая своей индивидуальности, а значит, ген относительно постоянен.
3. Оба пола в равной мере участвуют в передаче своих наследственных свойств потомству.
4. Гены способны удваиваться. Это наблюдение стало предпосылкой к открытию мейоза – процесса, в результате которого из одной материнской клетки с двойной ДНК образуются четыре одноцепочечные дочерние клетки.
5. Наследственные задатки являются парными: один – материнский, другой – отцовский; один из них может быть доминантным, другой – рецессивным. Это положение соответствует принципу аллелизма: ген представлен минимум двумя аллелями (формами).
Мендель рассказал о своем открытии 8 марта 1865 г., выступив перед Брюннским обществом естествоиспытателей. Первый в истории доклад о генетике был воспринят более чем прохладно – Грегору не задали ни одного вопроса. Через год его статья «Опыты над растительными гибридами» была напечатана и разослана в 120 университетских библиотек. Кроме того, ученый дополнительно заказал 40 оттисков своей работы и отправил известным ботаникам. Откликов не последовало… Такое непонимание ученый прокомментировал смиренно, как и подобает слуге Божьему: «Мое время еще придет».
В течение шести лет он читал лекции о своих исследованиях, но ни один из слушателей не понял смысла его теории. Никто не подозревал, что имеет дело с работой, которая на заре ХХ в. станет основой целой научной отрасли – генетики.
В начале 1880-х немец Вальтер Флемминг с помощью хроматины (окрашивающего состава) обнаружил внутри клеточного ядра нитеобразные хромосомы и пронаблюдал деление клетки (митоз), в процессе которого каждая хромосома производит свою копию. Продолжив эти исследования, бельгиец Эдуард ван Бенеден доказал постоянство набора хромосом у каждого вида животных и растений: 46 (23 пары) у человека, 20 (10 пар) – у кукурузы, 12 (6 пар) – у мухи, 8 (4 пары) – у дрозофилы. Каждая пара хромосом состоит из материнской и отцовской «нити», и при формировании половых клеток – яйцеклетки и сперматозоида – хромосомы разделяются, не удваиваясь (иначе каждый индивид имел бы двойной набор хромосом).