Существует подобная система и в нашей стране. Например, с первого дня работы знаменитой телебашни в Останкине пришлось думать о защите расположенного на ней оборудования и самой башни. Ведь за год молния бьёт в полукилометрового исполина до трёх десятков раз. И всякий раз в высотную гидрометеорологическую обсерваторию башни поступает штормовое предупреждение: «Готовьтесь, в ближайшие 2–3 часа в Останкине будет гроза…»
После такого предупреждения прерываются все работы на внешних объектах — антеннах, открытых площадках и др. Этого требует техника безопасности. Зато начинает работать специальная система, разработанная сотрудниками Научно-исследовательского энергетического института имени Г. М. Кржижановского. В нескольких пунктах по соседству с башней установлена фоторегистрирующая и измерительная аппаратура. Приборы позволяют мгновенно определить точку попадания молнии в башню.
Молнии могут достигать нескольких километров в длину. Их температура порой доходит до 30 тысяч градусов, в пять раз превышая температуру поверхности Солнца. Вроде бы их природа хорошо изучена, но порой молнии проявляют себя совершенно необъяснимо. Например, у пострадавшего от молнии человека нередко просыпаются необычайные способности, как это якобы случилось у знаменитой болгарской прорицательницы Ванги.
Несколько лет назад молния ударила престарелого американца недалеко от его дома. Изумлению приехавших на место происшествия врачей не было предела, когда они увидели, что этого человека, много лет назад поражённого слепотой и глухотой, молния мгновенно излечила!
В Южном Иллинойсе (США) женщина, которую во время сна ударила молния, стала ясновидящей. Теперь она состоит в штате полиции и помогает отыскивать пропавших людей.
Гигантская электрическая машина в небесах
Грозовые облака способны накапливать потенциал почти в миллиард вольт и создавать искры длиной несколько километров, способны даже при небольших размерах порождать несколько вспышек в минуту, каждая из которых по мощности равна средней электростанции. Кажется невероятным, что эти чудовищные электрические машины состоят лишь из клубящегося множества частиц воды и льда, поддерживаемых восходящим потоком воздуха.
Чтобы объяснить появление объёмных зарядов облаков и их пространственное разделение, выдвигали и выдвигают два основных вида гипотез. В одних главная роль отводится осадкам (её развивали ещё М. В. Ломоносов и его помощник Г. Рихман, в 1753 г. погибший во время проведения эксперимента с электрическими разрядами), в других, более сложных — конвективным потокам воздуха. Простейшая гипотеза осадков основана на том, что капли дождя, частицы снежной крупы и градины в грозовом облаке падают сквозь массу более мелких частиц, остающихся во взвешенном состоянии. Предполагалось, что при столкновении падающих частиц со взвешенными первые заряжаются отрицательно, а вторые положительно: таким образом, нижняя часть облака, состоящая из более тяжёлых частиц, накапливает отрицательный заряд, а верхняя — положительный. Однако ещё Б. Франклин заметил, что попадаются облака с «плюсом» внизу…
Другая гипотеза предполагает, что электрические заряды в облаке образуются в основном благодаря космическим лучам, отрицательно ионизирующим молекулы воздуха в верхней части облака. Но нисходящие потоки воздуха на периферии облака переносят затем отрицательно заряженные частицы из верхнего слоя вниз, а потому и в этом случае у облака формируется та же электрическая структура, которую описывает гипотеза осадков. Для более полного описания процессов в грозовом облаке в модель были введены дополнительные заряженные слои, однако, несмотря на все попытки её усложнения и доработки, конвективная гипотеза не получила чёткого экспериментального подтверждения.
Уже в XIX веке высказывались предположения о том, что объёмное разделение зарядов в грозовых облаках может происходить и при соударениях кристаллов льда в виде мелких снежинок или градин с более крупными частицами льда. Эта гипотеза, наименее вероятная на первый взгляд, получила подтверждение в ходе многолетнего эксперимента, проводимого NASA с использованием спутника TRMM (Tropical Rainfall Measurement Mission — «Программа по измерению атмосферных осадков в тропиках»).
Космический мониторинг грозовых облаков дал ценнейшие результаты. За три года спутник получил изображения грозовых облаков и исследовал более 1 миллиона молний. На спутнике TRMM была установлена оптическая камера для регистрации вспышек молний и радар, работавший в микроволновом диапазоне и позволявший измерять количество льда в облаках. При этом аппаратура давала возможность проводить исследования в разных масштабах — глобальном, региональном и локальном.