Из всего вышесказанного вытекает, что гравитационный радиус напрямую зависит от массы небесного тела. Например, гравитационный радиус Земли равен 10 миллиметрам, в то время как реальный – 6400 километрам. Для Солнца этот радиус равняется 3000 метрам, тогда как существующий – 700000 километров.
Итак, любое небесное тело, которое сжалось до гравитационного радиуса, перестает быть источником излучения, поскольку свет или любое другое излучение не может его покинуть из-за того, что 2-я космическая скорость в этих условиях будет выше скорости света.
Вот только непонятно: какие силы в состоянии сжать звезду до гравитационного радиуса? На этот вопрос астрофизики, особо не задумываясь, отвечают: сама звезда! Дело в том, что пока она «живет», внутри нее протекают термоядерные реакции, которые и создают потоки излучения, устремляющиеся к поверхности газового шара. Но количество вещества, необходимого для реакций (например, водорода), не безгранично, поэтому за некоторое время – от нескольких десятков миллионов до миллиардов лет – оно иссякает.
После этого внутреннее давление, которое поддерживало термоядерные реакции, исчезает, и звезда начнет сжиматься под действием собственной гравитации. Причем некоторые звезды сжимаются очень быстро – катастрофически. В результате происходит так называемый гравитационный коллапс.
Доказав теоретически существование черных дыр, астрономы стали искать способы, чтобы увидеть их воочию. Эта работа началась с поиска источников с рентгеновским излучением, поскольку оно появляется только при нагревании окружающего газа до сверхвысоких температур. Но чтобы такое нагревание произошло, необходимо, чтобы было очень сильным поле тяготения. А такие поля имеют сжавшиеся звезды: белые карлики, нейтронные звезды и.... черные дыры! Но если белые карлики можно наблюдать непосредственно, то с черными дырами проблема усложняется. Однако астрономы разрешили и эту задачу.
Выяснив, что если тело имеет массу, в два раза превышающую солнечную, то оно вполне может претендовать на роль черной дыры. Измерить же массу небесного объекта относительно легко, если оно имеет пару в виде другого небесного тела.
В конце концов такую двойную систему, которая к тому же излучает в рентгене, астрономы нашли в созвездии Лебедя. Объект назвали Лебедь Х-1, и он стал первым кандидатом в черные дыры.
Находится он на расстоянии 6000 световых лет от Земли и состоит из двух тел: нормальной звезды-гиганта массой около 20 Солнц и невидимого объекта массой 10 Солнц, который излучает в рентгеновском диапазоне.
Но если из черной дыры ничто не может вырваться, то в таком случае как же она может излучать? Получается парадоксальная ситуация. Но, оказывается, излучает не сама черная дыра, а лишь то вещество, которое на нее падает. Именно по его излучению и определяется наличие черной дыры.
Обладая мощным тяготением, черная дыра забирает у своего компаньона часть вещества, которое устремляется к ней по спирали. И чем это вещество ближе к черной дыре, тем сильнее оно разогревается. В конце концов в какой-то момент оно начинает излучать в рентгеновском диапазоне, что и фиксируют земные наблюдатели.
«Память» черных дыр
В отношении черных дыр долгое время в научных кругах преобладало мнение, что эти, наверное, самые загадочные, объекты во Вселенной ничем друг от друга не отличаются, то есть говоря человеческим языком, все они на одно лицо.
Однако исследования, проведенные в начале третьего тысячелетия американскими учеными, это устоявшееся представление о черных дырах полностью опровергли. Оказалось, они почти так же уникальны, как люди. Более того, их можно не только различить, но также выяснить их долгую «биографию», то есть то, что происходило с ними в далеком прошлом. Конечно, лишь теоретически.
Такие любопытные данные о черных дырах получила группа американских астрофизиков, возглавляемая профессором Самиром Матуром. Эти исследователи разработали новую теорию строения черных дыр, которая, как считают ученые, позволит разрешить давнюю проблему физики: так называемый информационный парадокс.
Суть же этого парадокса состоит в следующем. В соответствии с общепринятой моделью черной дыры, причем абсолютно неважно, из чего она была построена и в какой пропорции – из протонов или электронов, из газа, планет или звезд, – колоссальная гравитация превращает весь этот материал в абсолютно однородную структуру.
Из этого в свою очередь следовало, что внутренняя структура всех черных дыр практически одинакова. Отличаются же они друг от друга лишь своими гигантскими массами и диаметром горизонта событий, в пределах которого вырваться из смерча черной дыры ничто уже не в состоянии.