Виет изложил программу своих исследований и перечислил трактаты, объединённые общим замыслом и написанные на математическом языке новой буквенной алгебры, в изданном в 1591 году знаменитом «Введении в аналитическое искусство». Перечисление шло в том порядке, в каком эти труды должны были издаваться, чтобы составить единое целое — новое направление в науке. К сожалению, единого целого не получилось. Трактаты публиковались в совершенно случайном порядке, и многие увидели свет только после смерти Виета. Один из трактатов вообще не найден. Однако главный замысел учёного замечательно удался: началось преобразование алгебры в мощное математическое исчисление. Само название «алгебра» Виет в своих трудах заменил словами «аналитическое искусство». Он писал в письме к де Партене: «Все математики знали, что под алгеброй и алмукабалой… скрыты несравненные сокровища, но не умели их найти. Задачи, которые они считали наиболее трудными, совершенно легко решаются десятками с помощью нашего искусства…»
Основу своего подхода Виет называл видовой логистикой. Следуя примеру древних, он чётко разграничивал числа, величины и отношения, собрав их в некую систему «видов». В эту систему входили, например, переменные, их корни, квадраты, кубы, квадрато-квадраты и т. д., а также множество скаляров, которым соответствовали реальные размеры — длина, площадь или объём. Для этих видов Виет дал специальную символику, обозначив их прописными буквами латинского алфавита. Для неизвестных величин применялись гласные буквы, для переменных — согласные.
Виет показал, что, оперируя с символами, можно получить результат, который применим к любым соответствующим величинам, т. е. решить задачу в общем виде. Это положило начало коренному перелому в развитии алгебры: стало возможным буквенное исчисление.
Демонстрируя силу своего метода, учёный привёл в своих работах запас формул, которые могли быть использованы для решения конкретных задач. Из знаков действий он использовал «+» и «—», знак радикала и горизонтальную черту для деления. Произведение обозначал словом «in». Виет первым стал применять скобки, которые, правда, у него имели вид не скобок, а черты над многочленом. Но многие знаки, введённые до него, он не использовал. Так, квадрат, куб и т. д. обозначал словами или первыми буквами слов.
Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована в 1591 году. Теперь она носит имя Виета, а сам автор формулировал её так: «Если B+D, умноженное на A, минус A в квадрате равно BD, то A равно B и равно D».
Теорема Виета стала ныне самым знаменитым утверждением школьной алгебры. Теорема Виета достойна восхищения, тем более что её можно обобщить на многочлены любой степени.
Больших успехов достиг учёный и в области геометрии. Применительно к ней он сумел разработать интересные методы. В трактате «Дополнения к геометрии» он стремился создать по примеру древних некую геометрическую алгебру, используя геометрические методы для решения уравнений третьей и четвёртой степеней. Любое уравнение третьей и четвёртой степени, утверждал Виет, можно решить геометрическим методом трисекции угла или построением двух средних пропорциональных.
Математиков в течение столетий интересовал вопрос решения треугольников, так как он диктовался нуждами астрономии, архитектуры, геодезии. У Виета применявшиеся ранее методы решения треугольников приобрели более законченный вид. Так он первым явно сформулировал в словесной форме теорему косинусов, хотя положения, эквивалентные ей, эпизодически применялись с первого века до нашей эры. Известный ранее своей трудностью случай решения треугольника по двум данным сторонам и одному из противолежащих им углов получил у Виста исчерпывающий разбор. Было ясно сказано, что в этом случае решение не всегда возможно. Если же решение есть, то может быть одно или два.
Глубокое знание алгебры давало Виету большие преимущества. Причём интерес его к алгебре первоначально был вызван приложениями к тригонометрии и астрономии. «И тригонометрия, — как замечает Г. Г. Цейтен, — щедро отблагодарила алгебру за оказанную ею помощь». Не только каждое новое применение алгебры давало импульс новым исследованиям по тригонометрии, но и полученные тригонометрические результаты являлись источником важных успехов алгебры. Виету, в частности, принадлежит вывод выражений для синусов (или хорд) и косинусов кратных дуг.
В 1589 году, после убийства Генриха Гиза по приказу короля, Виет возвратился в Париж. Но в том же году Генрих III был убит монахом — приверженцем Гизов. Формально французская корона перешла к Генриху Наваррскому — главе гугенотов. Но лишь после того, как в 1593 году этот правитель принял католичество, в Париже его признали королём Генрихом IV. Так был положен конец кровавой и истребительной религиозной войне, долгое время оказывавшей влияние на жизнь каждого француза, даже вовсе не интересовавшегося ни политикой, ни религией.