Эти эксперименты заинтересовали Паскаля. Опыты Торричелли, сообщённые ему Мерсенном, убедили молодого учёного в том, что есть возможность получить пустоту, если не абсолютную, то, по крайней мере, такую, в которой нет ни воздуха, ни паров воды. Отлично зная, что воздух имеет вес, Паскаль напал на мысль объяснить явления, наблюдаемые в насосах и в трубках, действием этого веса. Главная трудность, однако, состояла в том, чтобы объяснить способ передачи давления воздуха. Блез, напав на мысль о влиянии веса воздуха, рассуждал так: если давление воздуха действительно служит причиной рассматриваемых явлений, то из этого следует, что чем меньше или ниже, при прочих равных условиях, столб воздуха, давящий на ртуть, тем ниже будет столб ртути в барометрической трубке. Стало быть, если мы поднимемся на высокую гору, барометр должен опуститься, так как мы стали ближе прежнего к крайним слоям атмосферы и находящийся над нами столб воздуха уменьшился.
Паскалю тотчас же пришла мысль проверить это положение опытом, и он вспомнил о находящейся подле Клермона горе Пюи-де-Дом. 15 ноября 1647 года Паскаль провёл первый эксперимент. По мере подъёма на Пюи-де-Дом ртуть понижалась в трубке — и так значительно, что разница на вершине горы и у её подошвы составила более трёх дюймов. Этот и другие опыты окончательно убедили Паскаля в том, что явление подъёма жидкостей в насосах и трубках обусловлено весом воздуха. Оставалось объяснить способ передачи давления воздуха.
Наконец, Паскаль показал, что давление жидкости распространяется во все стороны равномерно и что из этого свойства жидкостей вытекают почти все остальные их механические свойства; затем Паскаль показал, что и давление воздуха по способу своего распространения совершенно подобно давлению воды.
По тем открытиям, которые были сделаны Паскалем относительно равновесия жидкостей и газов, следовало ожидать, что из него выйдет один из крупнейших экспериментаторов всех времён. Но здоровье…
Состояние здоровья сына нередко внушало отцу серьёзные опасения, и с помощью друзей дома он не раз убеждал молодого Паскаля развлечься, отказаться от исключительно научных занятий. Врачи, видя его в таком состоянии, запретили ему всякого рода занятия; но этот живой и деятельный ум не мог оставаться праздным. Не будучи более занят ни науками, ни делами благочестия, Паскаль начал искать удовольствий и, наконец, стал вести светскую жизнь, играть и развлекаться. Первоначально всё это было умеренно, но постепенно он вошёл во вкус и стал жить, как все светские люди.
После смерти отца Паскаль, став неограниченным хозяином своего состояния, в течение некоторого времени продолжал ещё жить светскою жизнью, хотя всё чаще и чаще у него наступали периоды раскаяния. Было, однако, время, когда Паскаль стал неравнодушен к женскому обществу: так, между прочим, он ухаживал в провинции Пуату за одной весьма образованной и прелестной девицей, писавшей стихи и получившей прозвище местной Сафо. Ещё более серьёзные чувства явились у Паскаля по отношению к сестре губернатора провинции, герцога Роанеза.
По всей вероятности, Паскаль или вовсе не решился сказать любимой девушке о своих чувствах, или выразил их в такой скрытой форме, что девица Роанез, в свою очередь, не решилась подать ему ни малейшей надежды, хотя если и не любила, то высоко чтила Паскаля. Разность общественных положений, светские предрассудки и естественная девическая стыдливость не дали ей возможности обнадёжить Паскаля, который мало-помалу привык к мысли, что эта знатная и богатая красавица никогда не будет принадлежать ему.
Втянувшись в светскую жизнь, Паскаль, однако, никогда не был и не мог быть светским человеком. Он был застенчив, даже робок, и в то же время чересчур наивен, так что многие его искренние порывы казались просто мещанской невоспитанностью и бестактностью.
Однако светские развлечения, как ни парадоксально, способствовали одному из математических открытий Паскаля! Некто кавалер де Мере, хороший знакомый учёного, страстно любил играть в кости. Он и поставил перед Паскалем и другими математиками две задачи. Первая: как узнать, сколько раз надо метать две кости в надежде получить наибольшее число очков, то есть двенадцать; другая: как распределить выигрыш между двумя игроками в случае неоконченной партии.
Математики привыкли иметь дело с вопросами, допускающими вполне достоверное, точное или, по крайней мере, приблизительное решение. Здесь предстояло решить вопрос, не зная, который из игроков мог бы выиграть в случае продолжения игры? Ясно, что речь шла о задаче, которую надо было решить на основании степени вероятности выигрыша или проигрыша того или другого игрока. Но до тех пор ни одному математику ещё не приходило в голову вычислять события только вероятные. Казалось, что задача допускает лишь гадательное решение, то есть что делить ставку надо совершенно наудачу, например, метанием жребия, определяющего, за кем должен остаться окончательный выигрыш.