Во II половине XX в. появились новые способы сварки: плазменная, электронная, фотонная, лазерная, сварка взрывом, ультразвуком. Они расширили сферу применения сварочных технологий.
Электрическая турбина
Развитие электротехники потребовало перехода к более мощным двигателям, поскольку паровые машины не могли обеспечить увеличение мощности генераторов электрического тока. Перейти на качественно новый уровень можно было лишь за счет применения турбин.
Появление гидравлических турбин явилось следствием того, что водяные колеса не могли обеспечить энергией места, удаленные отводных источников. Они могли работать лишь при малом напоре воды (до 8 м), который был на равнинных реках. Это не позволяло использовать огромные запасы энергии, сосредоточенные в реках с большими напорами. Возможность их освоения заключалась в создании гидравлического двигателя, принципиально отличающегося от водяного колеса. Им стала водяная турбина, использовавшая силу реакции, создаваемой потоком воды на лопастях рабочего колеса.
Толчком к ее появлению стали труды Д. Бернулли. В своей работе «Гидродинамика», опубликованной в 1738 г., Бернулли обобщил ряд своих исследований по вопросам гидравлики и гидродинамики и вывел уравнение, устанавливающее на основании закона «живых сил» связь между давлением и скоростью в каждой точке потока несжимаемой капельной жидкости.
Уравнение Бернулли не только отражало закон сохранения и превращения энергии для частного случая гидравлической энергии, но и отчетливо указывало на принципиальную возможность построения гидравлических двигателей двух разных классов: использующих либо кинетическую, либо потенциальную составляющую полной энергии водного потока. Кроме того, Бернулли создал теорию реактивного действия, происходящего от вытекания струи через отверстие, сделанное в стенке сосуда.
Практически это явление было использовано впервые в 1745 г. английским механиком Баркером, построившим реактивное колесо, а в 1747 г. – венгерским физиком Я. Сегнером. Сегнер, работавший в Геттингенском университете, создал прибор, названный сегнеровым колесом, явившийся прототипом реактивного гидравлического двигателя. Позднее Сегнер совершенствовал конструкцию для практического использования своего колеса. Первоначально он построил цилиндр с двумя трубками для выпуска воды, а затем – с четырьмя трубками и даже шестью. Последнюю из этих конструкций Сегнер пытался применить для вращения жернова. Однако недостаточное знание сущности физических процессов, происходящих в таком двигателе, не дало Сегнеру возможности его усовершенствовать.
Л. Эйлер увидел в реактивном двигателе Сегнера большие практические возможности и занялся его изучением. В своих докладах, сделанных Берлинской академии наук, Эйлер дал анализ процессов в сегнеровом колесе и указал, что его низкий КПД связан с потерями энергии, которые можно значительно снизить. Потери при входе воды в колесо, происходящие от резкого изменения скорости и направления течения воды (потери на удар), могут быть уменьшены, если подводить воду к колесу в направлении вращения сосуда и со скоростью этого вращения. Чтобы уменьшить потери на выходе из турбины, Эйлер заменил горизонтальные водовыпускные трубки в двигателе Сегнера трубками криволинейной формы, идущими сверху вниз. В них не требовалось делать сбоку отверстие для выпуска воды, а можно было оставлять открытым нижний конец загнутой трубки. Эйлер подчеркнул, что в сегнеровом колесе может быть использована и превращена в механическую энергию почти вся энергия воды, пропускаемой через колесо.
Эйлер предложил разделить новую гидравлическую машину на две части: неподвижный направляющий аппарат, через который вода поступала в нижнее вращающееся колесо, насаженное на вал и являющееся рабочим органом машины. Рабочее колесо он снабдил 20 короткими изогнутыми трубами для выхода воды. Гидравлический двигатель Эйлера представлял собой переходную конструкцию от сегнерова колеса к гидравлической турбине.
К началу XIX в. в связи с успехами в области паровых двигателей применение водяных колес сократилось.
Исследования ученых, в частности Ж. В. Понселе, показали, что изогнутые лопатки водяных колес более эффективны, чем плоские, так как позволяют осуществить безударный вход воды на лопатки, что повышало КПД. Из металла можно было изготовлять изогнутые лопатки любого вида. Поэтому в этот период металлические водяные колеса стали преобладать над водяными колесами с плоскими лопатками.