Читаем 101 факт об искусственном интеллекте. Как подготовиться к жизни в новой реальности полностью

Я все же могу возразить: данные даже лучше нефти. В те годы, когда нефть была одним из ценнейших ресурсов в мире, лишь некоторые компании имели возможность извлекать из нее выгоду. Однако теперь, когда практически любой человек может усвоить базовые знания об искусственном интеллекте и машинном обучении и использовать полученные навыки для создания ценных инструментов и когда можно с легкостью воспользоваться бесплатными онлайн-источниками информации, каждый может извлечь выгоду из данных.

Доступ к данным

В современном мире у нас есть обилие данных, которые мы можем использовать. Например, тридцать лет назад объем данных по здравоохранению, дорожному движению, финансам и другим важным областям деятельности и темам был далеко не таким большим, как сейчас, и создавать решения на базе искусственного интеллекта для решения основных проблем в этих областях было просто невозможно.

Пользуясь той же логикой, можно предположить, что технологии, которые существуют у нас сейчас, будут иметь даже большее значение спустя десять лет, поскольку появится доступ к еще большему объему данных.

Один из примеров данной концепции можно найти в наблюдении за разработкой самоуправляемых автомобилей и связанных друг с другом «умных» городов. Основным компонентом, делающим создание этих вещей возможным, является объем данных, которые можно собрать и проанализировать для увеличения производительности систем искусственного интеллекта.

Анализ данных обычно опирается на два вида информации: структурированные и неструктурированные данные. Чтобы действительно понять системы ИИ, важно знать ключевые различия между двумя типами данных.

Обычно структурированные данные используются гораздо чаще неструктурированных. Структурированные данные включают в себя простые данные, такие как числовые значения, даты, валюты или адреса. Неструктурированные данные включают в себя более сложные для анализа типы данных: текст, изображения и видео. Однако развитие инструментов искусственного интеллекта сделало возможным анализ более обширного спектра неструктурированных данных, которые затем можно использовать для создания рекомендаций и прогнозов.

Мощная аналитика даст нам возможность в будущем применять инструменты искусственного интеллекта для всего общества в целом.


Рис. 1.6. Структурированные и неструктурированные данные


В «Меррилл Линч» посчитали, что 80–90 % всех бизнес-данных в мире не структурированы, это означает, что анализ именно такого типа данных очень ценен[14]. Результаты анализа неструктурированных данных могут привести к возникновению ряда преимуществ в нашем современном обществе, включая, помимо прочего, лучшие возможности для здравоохранения, более безопасные схемы дорожного движения, а также облегчение доступа к образованию.

Использование данных в бизнесе и общественной деятельности

«Большие данные» также помогают крупным компаниям улучшать свою внешнюю и внутреннюю деятельность. Ли Кайфу, венчурный капиталист и директор компании Sinovation Ventures, описывает причины того, почему данные важны для технологических компаний, в пяти шагах, которые компании используют для улучшения своих решений в области искусственного интеллекта:

Получение большего количества данных: поисковый алгоритм Google содержит в себе огромное количество данных. Кроме того, Facebook не стала бы настолько мощной социальной сетью без доступа к данным о человеческом общении. Основная идея здесь состоит в том, что технологические компании могут создавать услуги, которые были бы настолько мощными и полезными, чтобы люди хотели давать сервису пользоваться своими данными.

Лучший продукт с обученным искусственным интеллектом: в случае Google и Facebook ваш пользовательский опыт учитывает ваши индивидуальные предпочтения, чтобы быть максимально полезным вам. Это становится возможным благодаря наличию инструментов на базе искусственного интеллекта, которые способны персонализировать опыт.

Увеличение числа пользователей: если у пользователей был положительный опыт использования продукта, они, как правило, рекомендуют его своим друзьям.

Повышение прибыли: увеличение числа пользователей всегда означает увеличение прибыли.

Доступ к высококвалифицированным специалистам по теории и методам анализа данных и процессов, а также к экспертам в области машинного обучения: поскольку прибыль компаний растет, они получают возможность привлекать самых лучших в мире экспертов в области искусственного интеллекта[15].

Перейти на страницу:

Похожие книги

Мать порядка. Как боролись против государства древние греки, первые христиане и средневековые мыслители
Мать порядка. Как боролись против государства древние греки, первые христиане и средневековые мыслители

Анархизм — это не только Кропоткин, Бакунин и буква «А», вписанная в окружность, это в первую очередь древняя традиция, которая прошла с нами весь путь развития цивилизации, еще до того, как в XIX веке стала полноценной философской концепцией.От древнекитайских мудрецов до мыслителей эпохи Просвещения всегда находились люди, которые размышляли о природе власти и хотели убить в себе государство. Автор в увлекательной манере рассказывает нам про становление идеи свободы человека от давления правительства.Рябов Пётр Владимирович (родился в 1969 г.) — историк, философ и публицист, кандидат философских наук, доцент кафедры философии Института социально-гуманитарного образования Московского педагогического государственного университета. Среди главных исследовательских интересов Петра Рябова: античная культура, философская антропология, история освободительного движения, история и философия анархизма, история русской философии, экзистенциальные проблемы современной культуры.В формате PDF A4 сохранен издательский макет книги.

Петр Владимирович Рябов

Государство и право / История / Обществознание, социология / Политика / Учебная и научная литература