Вспомните первые персональные компьютеры, которые стали доступны простым пользователям в 1980-е годы. Эти машины были точно запрограммированы на выполнение определенных операций. В отличие от них, благодаря машинному обучению, многие технические устройства будущего будут собирать опыт и информацию из стиля их использования, что сделает опыт использования одного и того же устройства персональным для каждого конкретного пользователя. Уже сейчас существуют простые примеры такой персонализации: в социальных сетях, например в Facebook, или в результатах поиска Google.
Машинное обучение использует алгоритмы, чтобы обучаться на паттернах данных. Например, спам-фильтры электронной почты используют машинное обучение для определения того, какие письма являются спамом, и последующего отделения их от допустимых писем. Это простой пример того, каким образом могут использоваться алгоритмы обучения по паттернам данных, а приобретенные знания могут использоваться для принятия решений.
На рисунке 1.4 ниже изображены три разновидности машинного обучения: обучение с учителем, обучение без учителя и обучение с подкреплением.
При обучении с учителем алгоритмы используют данные, которые уже были размечены или каким-то образом организованы. При использовании данного метода воздействие со стороны человека необходимо для получения обратной связи.
Рис. 1.4. Типы машинного обучения
Обучение без учителя применяет алгоритмы, в которых данные не были заранее размечены или организованы. Напротив, паттерны определяются без вмешательства человека в процесс[7].
И наконец, при обучении с подкреплением алгоритмы учатся на опыте. Им не ставят никаких четких целей, кроме получения какой-либо награды[8].
Глубокое обучение является одной из наиболее быстроразвивающихся сфер применения искусственного интеллекта и составной частью машинного обучения. Оно используется для решения проблем, которые ранее считались слишком сложными, и обычно задействует огромные массивы данных.
Глубокое обучение происходит с использованием нейросетей, которые разделены на уровни таким образом, чтобы распознавать сложные связи и паттерны данных. Применение глубокого обучения требует для работы наличия огромного массива данных и внушительных вычислительных мощностей. На данный момент глубокое обучение используется для распознавания речи, обработки естественных языков, компьютерного зрения, а также идентификации автомобилей в качестве помощи водителю[9].
Одним из примеров этому может служить перевод текстов, реализованный в Facebook. В 2017 году в Facebook открыли для себя, что благодаря глубокому обучению они могут делать около 4,5 миллиарда переводов в день[10]. Как правило, это короткие переводы для таких вещей, как обновления статусов, которые люди выкладывают у себя на страничке. Инструменты искусственного интеллекта Facebook делают возможным автоматический перевод таких сообщений на различные языки. Без применения глубокого обучения предложение такого функционала стоило бы огромных денег и требовало бы наличия гигантской команды людей.
Чтобы понять техническую сторону глубокого обучения и областей его применения, я рекомендую пройти онлайн-курс от Эндрю Ына, лучшего эксперта в области глубинного обучения. Найти данный курс можно по ссылке:
Помимо этого, я рекомендую вам пройти хотя бы один из онлайн-курсов по искусственному интеллекту и машинному обучению, доступных на сайтах
Для упрощения описания в данной книге я использую именно термин «искусственный интеллект», хотя во многих случаях я имею в виду глубокое или машинное обучение. Помните, что термин «искусственный интеллект» в данной книге часто используется в широком смысле.
Технологии искусственного интеллекта и области его применения стали одной из ведущих тем новостей. К сожалению, в СМИ присутствует огромное количество недостоверной информации, которая вводит простых людей в заблуждение. Одним из лучших и наиболее достоверных источников актуальных новостей, связанных с искусственным интеллектом, является AI Index. Данный всеобъемлющий сайт представляет собой широкий спектр достоверной информации об искусственном интеллекте, включая последние тенденции и информацию от ведущих экспертов в области ИИ, таких как Себастьян Трун, Эрик Бринолфссон, Ли Кайфу и Эндрю Ын. Перейти на сайт можно по ссылке:
2. Будет ли искусственный интеллект способен видеть, слышать и понимать?