Современная теория черных дыр была основана Карлом Шварцшильдом, который использовал принципы теории относительности для доказательства того, что объект с достаточно сильным гравитационным полем не позволит свету покинуть его пределы. Шварцшильд доказал, что такой объект обладает горизонтом событий, т. е. замкнутой поверхностью, ограничивающей область вокруг черной дыры, откуда ничего не может выйти. Любой объект, пересекший область горизонта событий, пропадает навсегда. Радиус горизонта событий называется радиусом Шварцшильда. Для черной дыры массой М радиус Шварцшильда равен 2GM/c 2, где G — гравитационная постоянная, известная из теории всемирного тяготения Ньютона, с — скорость света. Чтобы Земля стала черной дырой, ее нужно сжать по крайней мере до 18 мм в диаметре. Астрономы получили косвенные доказательства существования черных дыр. Например, галактика М87 вращается очень быстро и предполагается, что в ее центре находится массивная черная дыра. Источник рентгеновского излучения X1 Лебедя представляет собой двойную систему, состоящую из звезды-сверхгиганта и очень плотной невидимой звезды, которая может быть черной дырой, вытягивающей материю из своего соседа.
ЭВОЛЮЦИЯ ЗВЕЗД
Эволюция звезды — это последовательность стадий, через которые она проходит в своем развитии, начиная с формирования и заканчивая прекращением испускания света. Звезда образуется из облака межзвездной пыли и водородного газа, сжимающегося под действием собственного тяготения облачного вещества. По мере увеличения плотности будущей звезды энергия гравитации переходит в энергию тепла и температура будущей звезды повышается, пока не начинаются термоядерные реакции синтеза. Высокая энергия излучения разогревает образующуюся звезду еще больше, и она становится стабильной.
В таком состоянии звезда пребывает большую часть своей жизни, находясь на так называемой главной последовательности. В результате синтеза ядер гелия из ядер водорода в ее ядре она испускает энергию в виде излучения.
Излучение, испускаемое в процессе этой реакции, оказывает давление на внешние слои звезды. Сила тяготения внешних слоев на внутренние уравновешивается давлением этого излучения изнутри. Когда исчерпываются запасы водородного топлива, ядро звезды сжимается, а ее внешние слои расширяются и она превращается в красного гиганта. На этой стадии в гелиевом ядре происходит синтез более тяжелых элементов, таких, как железо. Когда эта стадия заканчивается, то звезда массой меньше чем 1,4 массы Солнца сжимается и разогревается до стадии белого карлика. Если белый карлик входит в двойную звездную систему, то он может вытягивать вещество соседней звезды. В таком случае он вспыхивает и становится «новой» звездой.
Эволюция звезды
Если масса звезды в 1,4 раза превышает массу Солнца («предел Чандрасекара»), то она полностью сжимается и взрывается в виде сверхновой. Такой массивный взрыв приводит к столкновению легких ядер и образованию ядер тяжелых элементов.
ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ
Для хранения электрического заряда применяют конденсаторы. Емкостью конденсатора называется количество заряда, которое он может удерживать на единицу разности потенциалов. Для конденсатора емкостью С и потенциалом V удерживаемый заряд Q = CV. Единицей емкости служит фарад (Ф), равный 1 кулону на вольт (Кл/В). Емкость обычных конденсаторов, используемых в цепях, в основном варьируется от 0,001 Ф до миллионных долей фарада. Часто электроемкость измеряют в микрофарадах (мкФ), при этом 1 мкФ = 10 -6Ф.
Простейший конденсатор состоит из двух изолированных пластин, параллельных друг другу. Если пластины подсоединить к батарее, то с одной на другую потекут электроны. Одна пластина приобретет отрицательный заряд, поскольку получит электроны, а другая приобретет положительный заряд, потеряв их. Таким образом, пластины приобретут заряды, равные по величине, но противоположные по знаку. Количество накопленного конденсатором заряда равно количеству заряда на любой из пластин.
Энергия хранится в конденсаторе до тех пор, пока он заряжен. Она освобождается, когда конденсатор разряжается. К примеру, если заряженный конденсатор подсоединить к электрической лампе, электроны с отрицательно заряженной пластины потекут через лампу на положительно заряженную пластину. Накопленного заряда может хватить на то, чтобы лампа на некоторое время загорелась. Для конденсатора емкостью С с потенциалом V накопленная энергия равна