Так на Землю падают и не могут упасть все космические тела, в том числе и Луна. А сама Земля в своём орбитальном движении падает на Солнце, но из-за орбитальной скорости около 30 км/с остаётся почти на одинаковом расстоянии от светила. Этому закону подчиняются вообще все тела, движущиеся в поле тяготения – начиная от крошечных метеоритов, и завершая огромными галактиками, которые сталкиваются друг с другом.
Что такое баллистический маятник?
Как определить скорость пули, тягу реактивного двигателя или эффективность взрывчатки? Может показаться, что это очень сложная задача, однако в действительности всё довольно просто. Нам на помощь приходят элементарные законы физики и простейший прибор – баллистический маятник.
В самом простом случае баллистический маятник представляет собой мешок или ящик с песком, подвешенный на одном или нескольких подвесах. Как понятно из названия, маятник может раскачиваться на подвесах. Масса маятника должна быть строго известной, иначе эксперименты будут давать ошибку.
Итак, встанем на некотором расстоянии от маятника, и выстрелим в него – маятник в момент попадания пули отклонится и поднимется на некоторую высоту. Измерив эту высоту и проделав несложные вычисления, можно узнать скорость пули. Как это возможно? Благодаря закону сохранения количества движения.
Снаряд и маятник можно считать замкнутой системой, в которой не участвуют внешние силы (сопротивлением воздуха можно пренебречь), а в любой замкнутой системе действует закон сохранения количества движения. В начале эксперимента пуля была подвижной, а маятник – неподвижным, затем пуля передала маятнику некоторый импульс, в результате чего маятник приобретает скорость и отклоняется – при всём этом общее количество движения системы осталось неизменным.
Но как высота подъёма маятника связана со скоростью пули? Всё дело в той кинетической энергии, которую приобретает маятник от пули – в наивысшей точке подъёма маятника вся его кинетическая энергия переходит в потенциальную. Измерив высоту подъёма, мы рассчитаем потенциальную энергию маятника (по формуле
Сегодня существует масса разновидностей баллистических маятников – они выполняются в виде небольших пушек с зарядами, в виде стендов с реактивными двигателями, и т.д. Но все они основаны на одних законах, поэтому позволяют легко измерять скорости, импульсы и многие другие физические величины различных предметов и приборов.
Как фигурист изменяет скорость своего вращения?
Наверняка, вы не раз видели, как фигуристы выполняют самые удивительные трюки – это красиво и очень интересно. Но обращали ли вы внимание на то, как фигуристы вращаются? Вот спортсмен закручивается с раскинутыми руками, затем притягивает руки к груди, и резко увеличивает скорость вращения – это они могут проделывать в полёте, в приседе, и даже в паре. Но как у фигуристов получается так раскручиваться, ведь они, кажется, даже не прилагают для этого особых усилий?
Фигуристы опираются на закон сохранения момента импульса (или закон сохранения углового момента), который сводится к следующему: каждое вращающееся тело имеет некоторое количество движения, или момент импульса, который без воздействия внешних сил со временем остаётся неизменным. Для вращающегося тела также присуща ещё одна величина – момент инерции, который зависит от массы и конфигурации тела. Например, большой маховик обладает высоким моментом инерции, так как вращающаяся масса находится на некотором расстоянии от центра вращения – такой маховик трудно раскрутить и не менее трудно остановить. А стержень такой же массы имеет гораздо меньший момент инерции, так как вся вращающаяся масса сосредоточена у оси вращения.
Наконец, мы подошли к самому главному: момент импульса вращающегося тела находится в простой зависимости от угловой скорости и от момента инерции: