Читаем 120 практических задач полностью

# Для определения возраста (многоклассовая классификация)

model.add(Dense(num_classes_age, activation='softmax', name='age_output'))

# Компиляция модели

model.compile(optimizer=Adam(lr=0.0001), loss={'gender_output': 'binary_crossentropy', 'age_output': 'categorical_crossentropy'}, metrics=['accuracy'])

# Вывод архитектуры модели

model.summary

```

Пояснение архитектуры и процесса:

1. Предварительно обученная модель (Transfer Learning): В примере используется MobileNetV2, предварительно обученная на большом наборе данных ImageNet. Мы загружаем модель без полносвязных слоев (`include_top=False`) и замораживаем её веса, чтобы сохранить обучение, полученное на ImageNet.

2. Добавление собственных слоев: К предварительно обученной модели добавляются дополнительные сверточные (`Conv2D`) и полносвязные (`Dense`) слои. Эти слои помогают извлечь признаки из изображений и выполнить классификацию по полу и возрасту.

3. Функции активации: Для определения пола используется `softmax` с двумя выходами (мужчина и женщина), а для определения возраста также `softmax` с несколькими выходами (например, группы возрастов).

4. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam и функциями потерь `binary_crossentropy` для пола и `categorical_crossentropy` для возраста, соответствующими задачам классификации.

Преимущества использования подхода с использованием transfer learning

– Использование общих признаков: Transfer learning позволяет использовать знания, полученные на больших наборах данных, для задачи распознавания лиц.

– Улучшение производительности: Использование предварительно обученной модели улучшает производительность и скорость обучения на относительно небольшом наборе данных для задачи определения пола и возраста.

– Адаптивность к различным типам данных: Модель, построенная с использованием transfer learning, может быть адаптирована к различным типам лиц и различным условиям освещения.

Создание модели для определения пола и возраста по фотографии лица с использованием глубокого обучения и transfer learning представляет собой эффективный подход к решению задачи компьютерного зрения, который может быть доработан и оптимизирован для конкретных потребностей и требований задачи.

<p><strong>24. Построение нейронной сети для выявления спама</strong></p>

– Задача: Классификация сообщений как спам или не спам.

Для построения нейронной сети для выявления спама в текстовых сообщениях можно использовать различные архитектуры, но одной из наиболее эффективных является рекуррентная нейронная сеть (RNN) или её модификации, такие как LSTM (Long Short-Term Memory) или GRU (Gated Recurrent Unit), способные учитывать последовательную природу текстовых данных. Давайте рассмотрим основные шаги и архитектуру модели для такой задачи.

Построение нейронной сети для выявления спама

1. Подготовка данных

Процесс подготовки данных включает:

– Загрузку и предобработку текстовых данных сообщений (удаление стоп-слов, лемматизация и т.д.).

– Преобразование текста в числовой формат (например, с использованием метода векторизации, такого как TF-IDF или векторизация слов Word2Vec).

– Разделение данных на обучающую и тестовую выборки.

2. Построение модели с использованием LSTM

Пример архитектуры модели на основе LSTM:

```python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Embedding, Bidirectional, Dropout

from tensorflow.keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

import numpy as np

# Параметры модели и обучения

max_words = 10000 # максимальное количество слов в словаре

max_len = 100 # максимальная длина текста сообщения

embedding_dim = 100 # размерность векторов слов

lstm_units = 64 # количество нейронов в LSTM слое

# Создание модели

model = Sequential

# Векторное представление слов (Embedding)

model.add(Embedding(max_words, embedding_dim, input_length=max_len))

# LSTM слой

model.add(LSTM(lstm_units))

# Полносвязный слой

model.add(Dense(1, activation='sigmoid'))

# Компиляция модели

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Вывод архитектуры модели

model.summary

```

Пояснение архитектуры и процесса:

1. Embedding слой: Embedding слой преобразует каждое слово в вектор фиксированной длины (`embedding_dim`). Этот слой позволяет модели учитывать семантические отношения между словами.

2. LSTM слой: LSTM слой обрабатывает последовательность слов, учитывая их контекст и последовательность в тексте. В данном примере использован один LSTM слой.

3. Полносвязный слой: Выходной слой с активацией `sigmoid` используется для бинарной классификации (спам или не спам).

Перейти на страницу:

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература
1941. Забытые победы Красной Армии
1941. Забытые победы Красной Армии

1941-й навсегда врезался в народную память как самый черный год отечественной истории, год величайшей военной катастрофы, сокрушительных поражений и чудовищных потерь, поставивших страну на грань полного уничтожения. В массовом сознании осталась лишь одна победа 41-го – в битве под Москвой, где немцы, прежде якобы не знавшие неудач, впервые были остановлены и отброшены на запад. Однако будь эта победа первой и единственной – Красной Армии вряд ли удалось бы переломить ход войны.На самом деле летом и осенью 1941 года советские войска нанесли Вермахту ряд чувствительных ударов и серьезных поражений, которые теперь незаслуженно забыты, оставшись в тени грандиозной Московской битвы, но без которых не было бы ни победы под Москвой, ни Великой Победы.Контрнаступление под Ельней и успешная Елецкая операция, окружение немецкой группировки под Сольцами и налеты советской авиации на Берлин, эффективные удары по вражеским аэродромам и боевые действия на Дунае в первые недели войны – именно в этих незнаменитых сражениях, о которых подробно рассказано в данной книге, решалась судьба России, именно эти забытые победы предрешили исход кампании 1941 года, а в конечном счете – и всей войны.

Александр Заблотский , Александр Подопригора , Андрей Платонов , Валерий Вохмянин , Роман Ларинцев

Биографии и Мемуары / Военная документалистика и аналитика / Учебная и научная литература / Публицистическая литература / Документальное
Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука