Читаем 13.8 полностью

Автором открытия стал, конечно, Альберт Эйнштейн с его специальной теорией относительности. В работе, которая представила теорию миру, не было знаменитого уравнения E = mc². Она называлась «К электродинамике движущихся тел» и вышла в свет в конце сентября 1905 года в журнале Annalen der Physik[72]. Но меньше чем через неделю после публикации редактор журнала получил от Эйнштейна еще одну статью, всего в три страницы, которая была опубликована в том же году. В ней ученый разъяснял следствие из специальной теории: материя есть форма хранения энергии, и масса и энергия способны переходить друг в друга. Энергию он обозначил буквой L, а скорость света – V, поэтому и здесь то самое уравнение еще не было приведено в известной нам ныне форме. Идеи Эйнштейна, включая его понимание выводов из сущности радиоактивности, очевидны из письма, написанного им летом 1905 года другу Конраду Хабихту:

Еще один вывод из работы по электродинамике пришел мне на ум. Принцип относительности в связи с уравнениями Максвелла требует, чтобы масса была непосредственной мерой энергии, содержащейся в теле, – свет переносит массу. В случае с радием должно происходить заметное уменьшение массы.

Более горячее место

Таким образом, происхождение энергии, излучаемой Солнцем в космическое пространство, могло быть объяснено постепенным снижением массы звезды. Используя уравнение Эйнштейна, несложно подсчитать, что Солнце должно терять примерно 4 млн тонн каждую секунду. По человеческим меркам, это невообразимо много, но само Солнце столь велико, что, даже уменьшаясь с такой скоростью триллион лет, оно не потеряет и одного процента своей массы. Если верить Эйнштейну (а поначалу ему поверили далеко не все), вопрос временной шкалы геологии и эволюции практически решен. Однако как Солнцу удается преобразовывать массу в энергию?

В данном случае теория обогнала практику, и, чтобы продвинуться в понимании происходящего внутри Солнца и других звезд, необходимо было сначала получить дополнительные данные. Ключевое экспериментальное открытие было сделано в 1919 году Фрэнсисом Астоном[73], работавшим в кембриджской Кавендишской лаборатории. Он разработал инструмент под названием масс-спектрограф, или масс-спектрометр, с помощью которого можно измерять массы атомов конкретного элемента. Сначала атомы ионизируются, а затем луч из полученных ионов отклоняется с помощью магнитного поля. Тот факт, что инструмент использует не отдельные ионы, а луч, не влияет на результат, поскольку все ионы с одинаковой массой отклоняются одинаково, так что отклонение всего луча позволяет определять массу отдельных атомов. За свою работу в 1922 году Астон был удостоен Нобелевской премии. Одним из первых открытий, сделанных с помощью нового прибора, стало то, что масса атома гелия на 0,008 (на восемь десятых процента) меньше четырех атомов водорода, вместе взятых. Другие атомные массы тоже оказались почти (но не совсем) кратными массе атома водорода, что позволяло уточнить предыдущие оценки химиков. Таким образом, распространилось представление, что все элементы в каком-то смысле построены из водорода. Эта идея еще сильнее закрепилась в 1919 году, когда Резерфорд смог превратить ядро азота в ядро кислорода, бомбардируя азот альфа-частицами (трансмутация, или превращение одного элемента в другой).

Артур Эддингтон, который тогда только что триумфально подтвердил общую теорию относительности, сделал из этих результатов далеко идущие выводы в свете специальной теории. Выступая на собрании Британской ассоциации содействия развитию науки в Кардиффе в августе 1920 года, он сделал одно из самых выдающихся предсказаний в истории астрономии[74]:

Перейти на страницу:

Похожие книги

Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Восемь этюдов о бесконечности. Математическое приключение
Восемь этюдов о бесконечности. Математическое приключение

Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Хаим Шапира

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Учебная и научная литература / Образование и наука