Читаем 13.8 полностью

Ученые измеряют температуру в градусах по шкале Кельвина (К без знака градуса). Размер градуса такой же, как на шкале Цельсия, но 0 К – это абсолютный ноль, наименьшая возможная температура (–273,15°С). Округляя, можно сказать, что средняя температура на поверхности Земли равна примерно 300 К. Тщательно проработанная конструкция рупорной антенны позволяла сократить фиксируемые радиотелескопом помехи с Земли до менее чем 0,05 К. Чтобы оптимально использовать антенну, до начала астрономических наблюдений Пензиас и Вильсон решили построить для нее приемник-радиометр с такой же или, по крайней мере, максимально возможной чувствительностью.

Усилители, использованные в приемнике (похожие на те, что Вильсон применял в Калифорнии), были охлаждены до 4,2 К с помощью жидкого гелия, а для калибровки системы Пензиас придумал «холодную нагрузку», тоже охлажденную жидким гелием примерно до 5 К. Переключая антенну с наблюдений за холодной нагрузкой на наблюдения за небом, ученые смогли измерить воспринимаемую температуру Вселенной (предполагалось, что она равна нулю по Кельвину) и сделать поправку на известные факторы, такие как помехи из атмосферы и от радиометра. Оставшийся шум, как они предполагали, производится самой антенной и может быть устранен разнообразными способами, например полировкой прибора. Разумеется, они рассчитывали, что в итоге никакого лишнего шума не останется вообще и это будет признаком того, что телескоп работает корректно и можно переходить к радиоастрономическим исследованиям.

По сути, нечто подобное этой калибровке уже было сделано ранее (только с меньшей точностью и без необходимой холодной нагрузки) инженерами, создававшими рупорную антенну. Они проверяли, достаточно ли она чувствительна для поставленных целей. Один из них, Эд Ом, опубликовал результаты проверок в «Техническом журнале Bell System»[10] за 1961 год. Он сообщил, что температура измерений телескопа, направленного в небо, составила 22,2 К с точностью до ±2,2 К (то есть в диапазоне 20–24,4 К). Подсчитанное его коллегами количество шума в системе из атмосферы, вызванного остаточным нагревом радиометра и тому подобным, составило 18,9 К с точностью до 3 К (15,9–21,9 К). Если вычесть средние данные друг из друга, температура неба окажется равной 3,2 К. Но в целом два набора величин пересекались, и Ом сделал вывод, что «наиболее вероятная минимальная температура системы» – 21 ± 1 К. Однако по мере выверки системы Пензиасом и Вильсоном ошибок становилось все меньше, а разница между ожидаемыми и реальными измерениями все больше увеличивалась. Вскоре стало очевидно, что излучение, поступающее от антенны в приемник, по крайней мере на 2 К теплее, чем они ожидали.

Оба ученых сделали все возможное для устранения всех источников помех для антенны, даже очистили ее от помета, оставленного построившими рядом гнездо голубями, и приклеили алюминиевую фольгу на все стыки с заклепками. Ничто не помогало. Загадка «избыточной температуры антенны» мучила их весь 1964 год, ставя под угрозу радиоастрономический исследовательский проект как таковой. Впрочем, они находили время и для других задач: в декабре 1964 года на собрании Американской ассоциации содействия развитию науки в Вашингтоне Пензиас познакомился с коллегой-радиоастрономом Бернардом Бёрке из Массачусетского технологического института (МИТ). Три месяца спустя в телефонном разговоре Арно рассказал Бернарду, что слышал о проекте команды ученых Принстонского университета (это всего в получасе езды от Кроуфордского холма) под руководством Джима Пиблса и Роберта Дикке[11]. Кажется, этот проект мог пролить свет на проблему «избыточного» излучения. Обсудив это с Вильсоном, Пензиас позвонил Дикке, который как раз был на встрече с коллегами – Пиблсом и двумя младшими сотрудниками, Питером Роллом и Дэвидом Уилкинсоном. Дикке внимательно выслушал Пензиаса и сделал несколько замечаний. Положив трубку, он повернулся к коллегам и сказал: «Ребята, нас обскакали»{2}.

Пензиас и Вильсон не знали, что коллектив Принстона разрабатывает идею о том, что Вселенная расширялась из исходного горячего и плотного состояния и что она наполнена холодным фоновым излучением – радиошумом микроволнового диапазона. На следующий же день принстонцы отправились за 50 километров на встречу с Пензиасом и Вильсоном для проверки их радиотелескопа. Они моментально поверили, что исследователи Лаборатории Белла уловили именно это реликтовое излучение и что «избыточная» температура никак не связана с антенной, а представляет собой температуру самой Вселенной. Хотя сами Пензиас и Вильсон сомневались в этом и в первую очередь потому, что больше верили в концепцию стационарной Вселенной, утверждавшую, что по своей сути Вселенная вечна и неизменна. Однако они с облегчением восприняли то, что обнаруженное ими явление может быть научно объяснено.

Перейти на страницу:

Похожие книги

Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Рассказы о металлах
Рассказы о металлах

Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов.Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их "планах на будущее" рассказывает эта книга.Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.Иллюстрации Алексея Владимировича Колли.

Сергей Иосифович Венецкий

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Металлургия / Научпоп / Книги Для Детей