Спутник COBE (COsmic Background Explorer – исследователь космического фона) был запущен НАСА в ноябре 1989 года. Даже небольшие по масштабу радиочастотные датчики удобнее размещать на орбите, а не вести наблюдения с Земли: так проще устранить помехи от газа и пыли Млечного Пути. На коротких длинах волн (вплоть до инфракрасных) эти помехи слабее, но там вступают в игру водяные испарения, наполняющие нашу атмосферу. Они мешают излучению достичь поверхности Земли. Поэтому спутники наблюдения приобретают в чувствительности намного больше того, что теряют, уменьшившись в размерах относительно земных телескопов. (Кстати, по той же причине обсерватории располагают на вершинах гор, либо в холодном сухом воздухе Антарктики, либо поднимают аппаратуру на воздушных шарах.)
Первые наблюдения COBE показали, что спектр реликтового излучения представляет собой кривую излучения идеального черного тела, соответствующего температуре в 2,725 К. Результаты были представлены на встрече Американского астрономического общества 13 января 1990 года. Когда Джон Матер[185]
, основатель проекта СОВЕ, открыл слайд, демонстрирующий впечатляющую согласованность теории и наблюдений, аудитория разразилась овацией. Но это было лишь начало[186]. Предстояло проделать большую, трудоемкую работу.На сканирование всего неба у датчиков на спутнике ушло больше года: каждый из трех приборов произвел 70 миллионов измерений. На анализ полученных данных и объединение измерений в единую карту неба, отображающую колебания температуры реликтового излучения, коллективу проекта понадобилось несколько месяцев. Наконец в 1992 году они объявили, что такие колебания действительно существуют: самые «горячие» точки неба на три стотысячных градуса теплее, а «холодные» холоднее среднего. Эти колебания однородны: например, нельзя сказать, что крупные горячие точки теплее малых, и так далее. Наблюдения в точности соответствовали предсказаниям о виде и размере тех флуктуаций, которые должны были отпечататься на Вселенной в момент инфляции, доказывая присутствие в первый период существования Вселенной небольших неоднородностей в плотности материи (из которых затем образовались скопления галактик). Вселенная оказалась не такой уж и идеальной. Что же еще могли обнаружить исследования реликтового излучения? Успех миссии СОВЕ спровоцировал ряд нацеленных на более подробное изучение экспериментов на земле, в стратосфере и космосе. Но подобные проекты всегда занимают много времени: так, Матер задумал СОВЕ еще в 1974 году, всего через десять лет после открытия реликтового излучения и за пятнадцать лет до реального запуска спутника. Поэтому за время планирования проектов наши представления о Вселенной порой успевали измениться.
Темная сторона
Астрономы (по крайней мере, некоторые из них) еще с 1930-х годов знали, что далеко не все во Вселенной подвластно нашему зрению. Но лишь в конце XX века они поняли, что на самом деле то, что мы можем увидеть и из чего состоим мы сами, так называемая барионная материя[187]
, составляет лишь незначительную часть Вселенной.В 1930-х голландский астроном Ян Оорт[188]
изучал движение звезд в пределах Млечного Пути и нашел свидетельства того, что материя в нем далеко не ограничивается той видимой, из которой состоят звезды. Светила, подобные Солнцу, движутся по приближенным к окружности орбитам вокруг центра Галактики, внутри диска Млечного Пути, сдвигаясь в рамках этих орбит то кверху, то книзу, иногда выходя из основной массы галактики и возвращаясь в нее. Движение отдельных звезд нельзя изучать на протяжении тысяч лет, но, как обычно, можно попытаться сделать это с помощью статистики распределения звезд и их скоростей. А эта статистика говорит о том, что движение ярких звезд определяется не только притяжением других светил, но и некой невидимой, темной материи. В 1930-е годы никто не придал этому большого значения, поскольку предполагалось, что между звездами много газа и пыли. Но сейчас мы знаем, что этот тип темной материи, по сути близкий к тому, из чего состоим мы (барионная материя – то же, что атомная, то есть включающая протоны, нейтроны и электроны), имеет примерно ту же массу, что и все яркие звезды в Галактике. Но даже эта масса недостаточна для объяснения движения звезд Млечного Пути.