Читаем 200 знаменитых головоломок мира полностью

20. Здесь мы действительно сталкиваемся с запутанной задачей. Наши учебники сообщают, что все сферы подобны и что соответствующие объемы относятся, как кубы линейных размеров. Следовательно, поскольку окружности[31] двух сосудов равны соответственно одному и двум футам, а кубы единицы и двух в сумме дают 9, то нам остается только найти два других числа, сумма кубов которых равнялась бы 9. Разумеется, эти числа должны быть дробными. Кстати, этот маленький вопрос привлекал внимание образованнейших людей своего времени на протяжении двух с половиной столетий. Хотя Ферма в XVII в. показал, как можно найти ответ из двух дробей со знаменателем, содержащим не менее чем 21 цифру, этим исчерпываются не только все опубликованные ответы, полученные с помощью его метода, который я нашел неточным, но и никогда не публиковавшийся много меньший результат, приведенный ниже. Кубы чисел в сумме дают ровно 9, и, следовательно, такими долями фута должны выражаться длины окружностей двух сосудов, про которые Доктор сказал, что они должны вместе содержать такое же количество жидкости, как и показанные два сосуда. Один выдающийся клерк страховой компании и еще один корреспондент взяли на себя труд возвести в куб эти числа, и они оба нашли мой ответ совершенно правильным.

Если бы исходные сосуды имели в окружности соответственно 1 и 3 фута, то ответом служили бы числа сумма кубов которых равна 28. (См. также головоломку 61.)

Зная какое-то выражение числа в виде суммы или разности двух кубов, мы можем по формуле получить отсюда бесконечно много других представлений этого числа с помощью попеременно положительных и отрицательных чисел. Так, Ферма, отправляясь от известного равенства I3 + 23 = 9 (которое мы назовем основным), сначала получил решение из большйх отрицательных чисел, а затем решение из еще больших положительных чисел. Но существует бесконечно много основных соотношений, и я с помощью ряда проб нашел исходное решение из отрицательных чисел (меньших, чем те, что на первом шаге получил Ферма), из которого я уже и вывел решение, указанное выше. Это простое объяснение.

О любом числе до 100, за исключением 66, мы можем сказать, представимо ли оно в виде суммы двух кубов или нет. Студентам следует обратиться к курсу теории чисел.

Несколько лет назад я опубликовал решение для случая для которого Лежандр привел обстоятельное «доказательство» невозможности такого представления, но я обнаружил, что Люка предвосхитил появление моего решения.

21. На рисунке показано, как можно посадить 16 деревьев, чтобы они образовали 15 рядов по 4 дерева в каждом ряду. Это число рядов больше того, которое уже давно считалось максимальным. Хотя при нынешнем уровне наших знаний невозможно строго доказать, что число 15 нельзя превзойти, тем не менее я свято верю в то, что это максимально возможное число рядов.





22. Ответ приведен на рисунке, где сумма чисел вдоль каждого из 10 рядов равна 30. Трюк состоит в том, что хотя 6 бутылок (3, 5, 6, 9, 10 и 15), в которых стоят цветы, и не передвигаются, но все 16 бутылок не обязаны располагаться точно на том же участке стола, что и раньше. На самом деле квадрат передвинут на один шаг влево.

23. Портрет можно нарисовать, не отрывая карандаша от бумаги, одним росчерком, поскольку на нем есть только две точки, в которых соединяется нечетное число линий, но при этом совершенно необходимо, чтобы рисунок начинался в одной из этих точек, а заканчивался в другой. Одна точка находится вблизи внешнего края левого глаза короля, а другая — под ней, на левой щеке.

24. Пятьсот серебряных пенни можно разместить по четырем мешкам при заданных условиях ровно 894 348 различными способами. Если бы монет было 1000, то число способов возросло бы до 7 049 112. Это трудная задача на разбиение чисел. У меня есть единая формула, позволяющая решить задачу при любом числе монет для случая четырех мешков, но ее крайне трудно получить, и лучший метод состоит в том, чтобы найти 12 отдельных формул для различных сравнений по модулю 12.

25. Даже поверхностное изучение исходного рисунка покажет читателю, что если понимать условия такими, какими они кажутся с первого взгляда, то головоломку решить совершенно невозможно. Следовательно, нужно поискать какую-нибудь брешь в условиях, если их понимать буквально. Если бы Священник мог обойти исток реки, то на пути в церковь он смог бы пройти по одному и только одному разу через каждый мост, как показано на рисунке. Мы вскоре увидим, что это не запрещено. Хотя на рисунке показаны все мосты в приходе, но на нем представлена лишь часть самого прихода. Нигде не сказано, что река не берет свое начало на территории прихода, и, поскольку это единственный способ решить задачу, мы должны принять, что река начинается в данном приходе. Следовательно, на рисунке показано решение. Стоит отметить, что условие четко запрещает нам обходить устье реки, поскольку в нем сказано, что река впадает в море «через несколько сотен миль к югу», а ни один приход на свете не тянется на сотни миль!

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика