Название | Обозначение | Достоинство |
Фартинг | l/4d. | Четверть пенни |
Полупенни | l/2d. | Половина пенни |
Пенни | 1d. | Пенни |
Два пенса | 2d. | Два пенса (1/6 шиллинга) |
Три пенса | 3d. | Три пенса (1/4 шиллинга) |
Четыре пенса | 4d. | Четыре пенса (1/3 шиллинга) |
Шесть пенсов | 6d. | Шесть пенсов (1/2 шиллинга) |
Шиллинг | 1s | Двенадцать пенсов |
Флорин | 2s | Два шиллинга |
Полукрона | 2s. 6d | Два шиллинга шесть пенсов |
Двойной флорин | 4s. | Четыре шиллинга |
Крона | 5s. | Пять шиллинга |
Полусоверен | 10s | Десять шиллингов (½ фунта) |
Соверен | £1 | Двадцать шиллингов, или один фунт |
Гинея | £1 1s. | Двадцать один шиллинг |
Многие из этих монет уже вышли из обращения. Однако, хотя вы не встретите монету достоинством в гинею, эта денежная единица еще используется при расчетах; то же относится и к ее кратным. Например, о £5 5s. все еще говорят как о пяти гинеях.
Во времена Г. Э. Дьюдени в обращении находились почтовые марки следующего достоинства: 1/2d., 1d., l/2d., 2d., 2 1/2d., 3d., 4d., 5d., 6d., 9d., 10d., 1s., 2s., 6d., 5s., 10s., £l, £5.
ВВЕДЕНИЕ
Читатели «Мельницы на Флоссе» Дж. Элиот, возможно, помнят, как один из героев романа при малейшей неясности для себя неизменно повторял: «Мир — загадочен». В самом деле, нельзя отрицать того факта, что вокруг нас множество загадок, и с какими-то из них человеческий разум справился, а о каких-то можно смело сказать, что они ждут еще своего разрешения. Даже царь Соломон, которому Библия отнюдь не отказывает в мудрости, признавал: «Три вещи непостижимы для меня, и четырех я не понимаю: пути орла на небе, пути змея на скале, пути корабля среди моря и пути мужчины к девице».
Человек испытывает страсть к проникновению в тайны Природы; только каждый выбирает свой путь в незнаемое. Сколько жизней потрачено на превращение металлов в золото, на создание вечного двигателя, на поиски средств от злокачественных заболеваний и даже на то, чтобы полететь!
С утра до вечера мы, сами того не замечая, пребываем во власти головоломок. Но головоломки головоломкам рознь. Даже те из них, которые носят развлекательный характер, иногда основываются на каком-либо интересном и поучительном принципе, а иногда вовсе лишены его, как в головоломке со случайным образом разрезанным на части рисунком, который требуется сложить вновь, подобно детским кубикам с картинками. И если первые требуют какого-то напряжения ума, то вторые совершенно бездумны.
Любопытная склонность к созданию головоломок не отличает какую-либо расу или исторический период. Она с рождения заложена в каждом человеке независимо от того, когда он пребывал на земле, хотя может проявляться в самых различных формах. Не играет роли, кому конкретно она приписывается, египетскому ли сфинксу, библейскому Самсону, индийскому факиру, китайскому философу, тибетскому махатме. или европейскому математику.
Каждый из нас постоянно вынужден решать головоломки — ведь всякая игра, всякий вид спорта, как и любое другое времяпрепровождение, предлагают нам задачи большей или меньшей трудности. Нечаянный вопрос ребенка, два-три слова, на ходу брошенных велосипедистом своему напарнику, реплика одного игрока в крикет другому или яхтсмена, лениво оглядывающего горизонт, может оказаться задачей отнюдь не легкого свойства. Короче, все мы ежедневно, чаще всего не сознавая того, задаем друг другу бесчисленные головоломки.
Однако решение настоящей головоломки требует известного напряжения ума и изобретательности, и хотя при решении такого рода задач бесспорную помощь оказывают математические познания и некоторое знакомство с логикой, все же порой случается, что гораздо существеннее здесь природная сообразительность и смекалка. Дело в том, что многие из наилучших задач нельзя решить каким-то знакомым регулярным методом, они требуют совершенно оригинального подхода. Вот почему даже при большом и богатом опыте некоторые головоломки порой лучше поддаются обладателю острого от природы ума, а не высокой образованности. Не случайно, что при игре в шахматы или шашки больших успехов добиваются люди, лишенные специального математического образования, хотя часто может оказаться, что они наделены математическими способностями, не получившими должного развития.