Сначала мы будем иметь дело с некоторыми вопросами, относящимися к самой шахматной доске, затем — с некоторыми статическими задачами, связанными поочередно с ладьей, слоном, ферзем и конем, затем — с динамическими головоломками, связанными с теми же шахматными фигурами, и, наконец, речь пойдет о смешанных головоломках на шахматной доске. Я надеюсь, что формулы и таблицы, приведенные после статических головоломок, окажутся интересными сами по себе, поскольку публикуются впервые.
Шахматная доска представляет собой квадратную плоскую поверхность, разделенную прямыми линиями, пересекающимися под прямым углом, на 64 квадрата. Первоначально они не были раскрашены поочередно в черный и белый (или какие-либо два других) цвета, и это усовершенствование было введено, просто чтобы помочь глазу при игре. Польза такой раскраски несомненна. Например, она облегчает манипуляции со слонами, позволяя с одного взгляда оценить, что наш король или пешки на черных клетках не находятся под угрозой вражеского слона, передвигающегося по белым клеткам. И все же раскраска шахматной доски несущественна для самой игры как таковой. Точно так же, когда мы формулируем головоломки на шахматной доске, часто неплохо помнить, что дополнительный интерес может представлять «обобщение» на случай доски с любым числом клеток или ограничение задачи некой конфигурацией клеток, необязательно квадратной. Мы приведем несколько головоломок такого типа.
115. Разбивка шахматной доски.
Как-то я задался вопросом: сколькими различными способами можно разбить шахматную доску на две части одинаковой формы и размера, если разрезы проводить по границам клеток? Выяснилось, что эта задача одновременно и занимательна и трудна. Я представляю ее в упрощенном виде, взяв доску меньших размеров.Очевидно, что доску, состоящую из 4 клеток (2 х 2), можно разделить лишь одним способом (прямой, проходящей через центр), ибо повороты и отражения мы не будем рассматривать как новые решения. В случае доски из 16 клеток (4 х 4) существует 6 различных способов. Они все приведены здесь на рисунке, и читателю не удастся найти еще какое-нибудь решение. Теперь возьмите большую доску, 6 х 6, и попытайтесь определить число способов в этом случае.
116. Львы и короны. Юная леди, которую вы видите на рисунке, при раскройке столкнулась с небольшой трудностью, помочь преодолеть которую предлагается читателю. По неким причинам, о которых она умалчивает, ей нужно разрезать этот квадратный кусок дорогой ткани на 4 части одинаковых размеров и формы, но важно, чтобы в каждой из частей оказалось по льву и по короне. Поскольку леди настаивает на том, чтобы разрезы пришлись только на границы квадратов, она весьма озадачена. Можете ли вы показать ей нужный способ? Существует только один возможный способ раскройки ткани.
117. Доски с нечетным числом клеток. Рассмотрим доски, которые содержат нечетное число клеток. Начнем с доски 3 х 3. Ее можно разрезать на равные части, лишь удалив центральную клетку.
Вполне очевидно, что это можно сделать только одним способом, как показано в случае а. Части А и В имеют одинаковые размеры и форму, и при любом другом способе разрезания получатся такие же части, а, как мы знаем, в подобном случае способы не считаются различными.
Я предлагаю читателю разрезать на две части одинакового размера и формы максимальным числом различных способов доску 5x5 (случай б). На рисунке приведен один из таких способов. Сколько всего существует различных способов? Часть, которая при перевертывании другой стороной кверху принимает ту же форму, что и другая часть, не считается обладающей отличной от нее формой.
118. Задача Великого ламы. Жил некогда Великий лама, у которого была шахматная доска из чистого золота, прекрасно выполненная и, разумеется, огромной ценности. Каждый год в Лхасе среди лам проводился турнир, и тому из них, кому удавалось выиграть у Великого ламы, воздавались большие почести, его имя гравировалось на оборотной стороне доски, а в клетку, где был поставлен мат, вправляли драгоценный камень. После четырех поражений Великий лама умер (возможно, от огорчения).
Новый Великий лама был неважным игроком и предпочитал другие виды невинных развлечений: он больше любил рубить людям головы. Шахматы он считал загнивающей игрой, которая не способствует совершенствованию разума или морали, и полностью отменил турниры. Затем он послал за четырьмя ламами, имевшими дерзость играть лучше Великого ламы, и сказал им:
— Ничтожные варвары, именующие себя ламами! Знаете ли вы меру своей дерзости? Вы осмелились претендовать на то, что в чем-то превосходите моего предшественника?! Возьмите эту доску и прежде, чем рассвет займется над камерой пыток, разрежьте ее на 4 равных части одинаковой формы, чтобы каждая содержала по шестнадцать целых клеток и по одному драгоценному камню! Если вы в сем деле не преуспеете, то, к вашей же печали, мы придумаем другое испытание. Идите!