Можно привести весьма любопытный пример вполне реального проекта решения задачи. Предлагается огромный, объемом несколько кубических километров, стальной котел наполовину заполнить водой и греть ее взрывами термоядерных зарядов. Автор не берет на себя смелость оценивать целесообразность и экологические последствия реализации подобного проекта. Просто данный пример достаточно наглядно показывает масштабы поисков альтернативных способов использования термоядерной энергии.
В настоящее время взгляды на управляемый термоядерный синтез весьма противоречивы. С одной стороны, он практически не имеет равнозначной альтернативы, на решение проблемы уже затрачены огромные средства и отступать нельзя. С другой — каждый новый шаг дается путем все больших и больших затрат. Многим странам пришлось отказаться от продолжения исследований ввиду их чрезвычайной дороговизны. Даже самые горячие оптимисты ожидают, что задача может быть решена не раньше середины следующего столетия. Но к тому времени на Земле будут сожжены почти все запасы нефти и газа и, следовательно, человечество ожидает жесточайший сырьевой кризис. А если решение все же не будет найдено?..
Но действительно ли перспективы столь мрачны и человечеству, чтобы избежать их, необходимо идти на баснословные затраты. Может быть, есть более дешевое и доступное решение?
Такой путь есть. И природа уже неоднократно его подсказывала. Еще на заре термоядерных исследований был обнаружен так называемый «пинч-эффект» — сжатие плазменного столба магнитным полем тока разряда. Эффект вызывал выброс нейтронов, служащий признаком реакции синтеза. Было много восторгов, ожидалось быстрое решение проблемы синтеза. Очень эмоционально этот момент обыгран в известном фильме того времени «Девять дней одного года». Но восторги быстро сменились разочарованием: выяснилось, что источником нейтронного выброса была не реакция по всему объему столба плазмы, а небольшие группы быстрых дейтронов (ядер дейтерия). При ускорении электрическими полями, возникающими в плазме при сильных неустойчивостях, дейтроны получали энергию, существенно превышавшую энергию остальных частиц плазмы, и вступали в реакцию синтеза с выходом нейтронов. Такой «отрыв от коллектива» физикам очень не понравился, полученные нейтроны были названы «ложными», и от этого направления поисков отказались. Но ведь реакция синтеза шла!
Еще пример из недавнего прошлого. Многим хорошо запомнилось сенсационное сообщение о «холодном термояде». Однако достаточно быстро выяснилось, что обнаруженный М. Флейшманом и С. Понсом и независимо от них С. Джоунсом эффект очень слаб и не может быть использован для получения энергии (см. «Наука и жизнь» № 6, 1989 г. и № 3, 1990 г.). Наиболее вероятное объяснение обнаруженного эффекта — так называемая «ускорительная модель»: реакция синтеза происходит в результате ускорения дейтронов сильным электрическим полем, возникающим при растрескивании палладия. Опять ускоренные дейтроны!
Обратимся к истории физики. Каким образом была проведена первая реакция ядерного синтеза (Э. Резерфорд, 1919 г.)? Путем бомбардировки ядер азота быстрыми α-частицами. Каким образом получают ядра трансурановых элементов? Бомбардировкой ядер известных элементов ускоренными частицами.
Путь проведения ядерных реакций на ускорителях совершенно естественен и ни у кого не вызывает сомнений. Уровень энергий ускоренных протонов измеряется уже сотнями гигаэлектронвольт. Для такой техники реакция синтеза дейтерий — тритий или дейтерий — дейтерий с энергией кулоновского барьера 10 кэВ никакой сложности не представляет. Тем не менее возможность осуществления реакции ядерного синтеза путем использования столкновений ускоренных ядер дейтерия и трития до сих пор не исследовалась. И для этого есть весьма существенные основания.
Дело в том, что главная цель термоядерных исследований — получение интенсивной реакции с выделением большого количества энергии, а в ускорителях ядерные реакции происходят практически поштучно. Здесь главное не количество актов реакции, а сам факт ее прохождения. Малая интенсивность ядерных реакций в ускорителях определяется тем, что количество частиц в ускоряемом пучке сравнительно невелико и соответственно их концентрация мала. Конечно, прямое использование современной ускорительной техники для решения проблемы управляемого синтеза бессмысленно. Для нее задача повышения концентрации частиц в пучке ставится, но не как основная; здесь главная задача — достичь максимальной энергии частиц.