Чем позже сформировалась нервная клетка, тем более долгий путь ей предстоит. Все дело в том, что мозг строит себя изнутри, слой за слоем, и его глубокие, самые примитивные участки создаются первыми. В результате по мере роста мозга нервным клеткам становится все сложнее преодолевать этот путь в одиночку. Тогда им на помощь приходят клетки другого типа – глиальные.
В отличие от нервных глиальные клетки не передают никаких электрических сигналов. Долгое время ученые полагали, что они представляют собой всего лишь соединительную ткань, удерживающую на месте все структуры мозга. Их и назвали-то так именно поэтому: греческое «глиа» означает «клей». Позже, однако, выяснилось, что глиальные клетки – это далеко не просто клей и выполняют они совершенно незаменимую для нервной системы функцию. Некоторые из них служат своего рода иммунной системой и проползают, протискиваясь между нейронами, в поврежденные или подверженные атаке вируса участки. При необходимости они могут пожирать уже уничтоженные клетки. Другие глиальные клетки имеют форму звезды и протягивают свои длинные отростки вдоль кровеносных сосудов. Эти клетки следят за чистотой в мозге: они откачивают избыток жидкости по узким водяным канальцам и смывают любые продукты жизнедеятельности, накапливающиеся в процессе работы нервных клеток. Эта чистка на полную мощность запускается в то время, когда мы засыпаем. Таким образом, благодаря глиальным клеткам каждый свой новый день мы начинаем буквально со свежевымытыми мозгами.
Этапы развития мозга
Поначалу в мозге формируется еще один, особый тип глиальных клеток, который помогает новорожденным нервным клеткам преодолевать свой долгий путь к окраинам расширяющегося головного мозга. Такие глиальные клетки пропускают свои длинные отростки сквозь слои головного мозга и берут на себя роль своего рода строительного подъемника. Нервные клетки из поколения в поколение прицепляются к этим отросткам и устремляются по ним к своей цели, словно ползущие по травинке улитки. В конечном счете каждая нервная клетка находит себе пристанище, однако на этом трудности не заканчиваются, а только начинаются.
ИНТЕРЕСНО
Без участия нейронов вы не сможете пошевелить даже пальцем ноги.
Прибыв на место, нейрон должен сделать то, что и все новички: обзавестись связями. Потому что без чего точно не могут прожить нейроны, так это без болтовни. В нашем мозгу полным-полно их, и все они возбужденно болтают, причем некоторые умудряются беседовать с тысячами своих собратьев одновременно. Другие нейроны, расположенные на коже или глубоко внутри головного мозга, передают сообщения обо всех наших ощущениях. Более того, нервных клеток много в спинном мозге, они тесно сотрудничают с нейронами головного мозга и частенько переговариваются с мышцами. А теперь пошевелите пальцами ног, например, и скажите спасибо своему спинному мозгу за то, что расположенные на ногах мышцы поняли, что вам от них было нужно.
Переговариваются нейроны совершенно особым способом – посредством электрических сигналов. Если гормональные послания неторопливо разносятся кровью и любой желающий может их подобрать, то нервные сигналы молниеносны и направлены конкретному адресату. От нейронов во все стороны отходят длинные тонкие волокна, играющие роль своего рода проводов. Главный коммуникационный кабель нейрона называется аксоном
. Он отвечает за передачу информации. Для исправной работы нервной системы чрезвычайно важно, чтобы аксоны подсоединялись в нужное место. Так, нервные клетки, специализирующиеся на зрении, должны подключаться к глазу, контролирующие движение – к мышцам. Получается, эти нервные окончания у взрослого человека должны достигать чуть ли не метр в длину. Но как же все-таки этим аксонам удается дотягиваться туда, куда надо?К счастью, аксоны – это не просто провода. В отличие от компьютерных кабелей они живые, а также очень любопытные. Аксон ползет по телу, ориентируясь на молекулы на поверхности окружающих его клеток. Тоненькое нервное волокно вытягивается вперед, проверяя: