Оказалось, что РНК-интерференция заглушает гены не просто так! Это делается для защиты клетки от вирусов, особенно у низших организмов. Генетический код многих вирусов записан именно на двухцепочечную РНК. Когда такой вирус заражает клетку, он вводит в нее свою молекулу РНК, которая немедленно связывается с Dicer. Комплекс RISC активируется, вирусная РНК деградирует, и клетка выживает. В дополнение к этому способу защиты высокоразвитые организмы (такие, как человек) разработали эффективную иммунную защиту, включающую антитела, клетки-киллеры и интерфероны.
Но самое удивительно, что иногда РНК-интерференция защищает организм не только от вирусов, но и от самого себя! Точнее, от его же собственных генов. Так называемые транспозоны представляют собой последовательности ДНК, которые могут перемещаться в геноме. И если они попадут в неправильное место, то могут нанести организму серьезный ущерб. Многие транспозоны работают путем копирования собственной ДНК в РНК, которая затем обратно транскрибируется в ДНК и встраивается на новое место в геноме. Часть этой молекулы РНК, как правило, бывает двухцепочечной и при необходимости может быть узнана механизмом РНК-интерференции. Таким образом, интерферирующие РНК защищают геном от транспозонов, то есть от части его самого.
Сотни генов в нашем геноме кодируют небольшие молекулы РНК, называемые микроРНК. Они содержат фрагменты кода других генов. Такая микроРНК может образовывать двухцепочечную структуру и активировать механизмы интерференции РНК для блокирования синтеза соответствующего белка. Теперь мы понимаем, что генетическая регуляция микроРНК играет важную роль в развитии организма, для здоровья которого крайне важно, чтобы в нужное время синтезировались нужные белки.
РНК-интерференция открывает огромные возможности для использования в генной инженерии. Были разработаны специальные двухцепочечные молекулы РНК для искусственного подавления определенных генов у людей, животных или растений. Такие молекулы РНК вводятся в клетку и так же, как в природе, активируют механизм РНК-интерференции для разрушения мРНК с идентичным кодом.
Этот метод уже стал важным инструментом исследователей в биологии и биомедицине. В будущем ожидается, что он будет использоваться во многих областях, включая клиническую медицину и сельское хозяйство. Например, во время опытов с животными было показано, что гены, вызывающие высокий уровень холестерина в крови, можно искусственно подавить, если ввести интерферирующую РНК. В настоящее время ученые разрабатывают планы по лечению с помощью РНК-интерференции вирусных инфекций, сердечно-сосудистых заболеваний, рака, эндокринных расстройств и так далее.
Теломера, преодолевшая предел Хейфлика
Элизабет Блэкберн
Джек Шостак
Кэрол Грейдер
В 2009-м Нобелевскую премию по физиологии и медицине присудили трем ученым, которые экспериментальным путем смогли решить фундаментальную задачу биологии. Вот ее суть: как предотвратить укорочение хромосом при каждом последующем делении клеток, как копировать клетки неизмененными и таким образом продлевать жизнь организма и отодвигать старение. Американские цитогенетики Элизабет Блэкберн, Джек Шостак, а также биолог Кэрол Грейдер продемонстрировали ее решение: оно находится в концевых участках хромосом – теломерах. Ученые выделили фермент теломеразу, который препятствует укорочению хромосом.
Когда один из авторов этой книги еще училась на биологическом факультете МГУ, студентов только начинали знакомить с гипотезой советского ученого Алексея Оловникова. Гипотеза касалась участия теломер в механизме, обуславливающем конечное число делений клетки. Тогда было известно, что концевые участки хромосом представляют собой несколько сотен или тысяч одинаковых триплетов – а это и есть теломеры. Триплет – это последовательность из трех оснований, кодирующая одну аминокислоту, из которой в дальнейшем строятся белки. А теломеры не кодируют никаких белков, зачем они тогда – тем более в таком количестве? И почему это количество сокращается с каждым делением клетки?
Советский ученый Алексей Матвеевич Оловников в 1971 году предположил, что укорочение теломер – это и есть механизм, обуславливающий конечное число делений клетки (так называемый предел Хейфлика). В 1992 году было обнаружено, что дети с прогерией, умирающие от «старости» к 13 годам, просто уже рождаются с короткими теломерами. Так была обнаружена прямая связь между длиной теломер и старением.