Американец Хамилтон Смит проверил гипотезу Арбера. Исследователь выделил один из ферментов рестрикции в чистом виде и показал, что именно он может расщеплять чужеродную ДНК. Смит определил химическую структуру областей ДНК, разъединявшихся под воздействием фермента, а позже обнаружил определенные правила, которые могли применяться для описания ферментов. Все они расщепляли ДНК, причем каждый работал только на определенном участке. С их помощью гигантские молекулы ДНК могли быть разрезаны на заранее известные сегменты, которые впоследствии можно было использовать для структурных исследований или генетических экспериментов.
Последний шаг в развитии технологии редактирования генома сделал еще один американец — Даниел Натанс. Он первым применил ферменты рестрикции в экспериментальной генетике, и его работа стала источником вдохновения для ученых во всем мире. Расщепив вирусную ДНК с помощью ферментов рестрикции, Натанс построил первую генетическую карту вируса SV40. Методика, разработанная им для этой цели, была позже использована другими учеными для создания более сложных карт. Таким образом, достаточно быстро удалось построить полную генетическую карту вируса, который начал исследовать Натанс.
Применение ферментов рестрикции произвело революцию в генетических исследованиях высших организмов и полностью изменило представления человечества об их геноме. Были обнаружены кодирующие и некодирующие участки ДНК, ферменты рестрикции были использованы также для генной инженерии. С их помощью ученые научились выборочно удалять из клеток части генетического материала или, наоборот, встраивать в ДНК новые фрагменты.
Эти эксперименты почти сразу вызвали опасения этического характера — о копировании человека и редактировании его генома. Но на самом деле в конце 1970-х годов до этого было еще очень далеко. Даже в наши дни ученые делают лишь первые шаги в генной терапии, пытаясь отредактировать геном больных людей и таким образом вылечить их. Людям, живущим в XXI веке, только предстоит увидеть грандиозные успехи генной инженерии, зародившейся именно благодаря работе Арбера, Натанса и Смита. В 1978 году они получили Нобелевскую премию «за открытие ферментов рестрикции и их применение для решения проблем молекулярной генетики».
Кстати
Современные методы редактирования генома с помощью ферментов рестрикции используют конструирование искусственных белков для каждой конкретной манипуляции. В этом заключаются так называемый метод цинковых пальцев и технология TALEN. Но в последнее время появился еще один простой и очень эффективный метод — технология CRISPR-Cas9. Для узнавания нужных фрагментов ДНК она использует искусственную РНК. Этот метод получил широкое распространение благодаря относительной простоте реализации: ведь сконструировать РНК гораздо проще, чем белок.
Туберкулезная палочка, или с чего началась микробиология
Роберт Кох
Часто истории исследований, которые триумфально заканчивались Нобелевской премией, происходили благодаря близким людям врачей и ученых. Путь Ильи Мечникова к изучению защитных механизмов организма от инфекций начался с трагического события — смерти от туберкулеза его молодой жены. У Роберта Коха решающий поворот в жизни случился, когда в подарок на свое 28-летие он получил от супруги хороший микроскоп. После этого Кох оставил не очень успешную медицинскую практику, завел кучу лабораторных мышей и целые дни проводил за микроскопом, наблюдая и фотографируя микромир. В результате ученый выделил в чистом виде и описал возбудителей сибирской язвы, туберкулеза и холеры (холерный вибрион), чем завоевал признание в научном мире: стал главой европейских микробиологов и основоположником немецкой школы бактериологов. Нобелевская премия была вручена Роберту Коху в 1905 году «за его исследование и открытия в отношении туберкулеза» — вероятно, потому, что именно это заболевание было самой распространенной причиной смерти в XIX веке, в том числе в Германии.
Слава пришла к Коху благодаря тому, что он открыл и довел до совершенства три революционных метода в исследовании микробов.
Во-первых, до него исследователи наблюдали микробов в их естественной окраске, то есть бесцветными. Учитывая уровень оптики позапрошлого века, это часто не давало возможности даже заметить микроб — особенно если его оптическая плотность мало отличалась от оптической плотности окружающих тканей. Кох применил анилиновые красители, которые избирательно окрашивали только тела микробов, и наблюдения за ними стали гораздо более результативными. Это подняло микробиологические исследования на новый научный уровень.