Читаем 30 Нобелевских премий: Открытия, изменившие медицину полностью

Для решения этой задачи Маршалл Ниренберг воспроизвел в пробирке экспериментальную систему, которая использовала нуклеиновую кислоту в качестве шаблона для сборки белка. Но сначала он синтезировал полиурацил — молекулу РНК, которая содержит только одно основание, а именно — урацил. Затем ученый поместил эту молекулу в свою бесклеточную экспериментальную систему, состоящую из смеси аминокислот, РНК, рибосом (комплексов, производящих белок), необходимых ферментов и других веществ, полученных в результате деликатного размельчения бактерий. В результате полиурациловая РНК направила синтез молекулы белка, состоявшего из цепочки молекул аминокислоты фенилаланина. Следовательно, код для фенилаланина представлял собой триплет урацил-урацил-урацил, или УУУ. Поскольку ДНК содержит четыре азотистых основания, а генетический код образуется из триплетов азотистых оснований, то существует 64 возможные триплетные комбинации для ДНК. Далее Маршалл Ниренберг, Роберт Холли и Хар Коран (ему принадлежит главная заслуга в этом деле) повторили эксперименты в той же системе с каждой из триплетных комбинаций — и синтезировали все возможные триплетные последовательности. Таким образом были открыты коды триплетов азотистых оснований для всех 20 аминокислот. Правда, оказалось, что аминокислоты кодируются более, чем одним триплетом, а некоторые триплеты известны как «бессмысленные», потому что не кодируют ни одну аминокислоту, но их значение было определено позднее.

Таким образом было установлено, как устроен механизм клетки, осуществляющий нуклеиново-белковый перевод. Теперь оставалось решить, какую роль в процессе играют РНК и как весь этот механизм взаимодействует в пространстве клетки с ее ядром, в котором находится ДНК, и рибосомами, где фактически происходит сборка белков. Этим занялся Роберт Холли. Основываясь на расшифрованном Ниренбергом триплетном коде для аминокислоты фенилаланина, он синтезировал молекулу транспортной РНК с соответствующим нуклеотидным составом.

Теперь стало понятно, что существует как минимум три типа РНК, взаимодействующих друг с другом в процессе синтеза молекул белка: информационная (или матричная), рибосомная и транспортная (о еще одном типе РНК — интерферирующей — см. в главе «РНК-интерференция — «контролер» генетической информации»). Информационная РНК копирует генетический код с ДНК в клеточном ядре и переносит генетическую реплику к рибосомам в цитоплазму клетки. Транспортная РНК, которая содержит специфическую нуклеотидную последовательность для каждой аминокислоты, захватывает предназначенную ей нуклеотидным кодом аминокислоту и транспортирует ее в цитоплазме к рибосомам, где белки и синтезируются при участии рибосомной РНК.

Рис. 15. Схема кодирования аминокислот кодонами и стоп-кодоны

Холли и его коллеги обнаружили также, что транспортная РНК имеет биологически активную вторичную структуру в дополнение к первичной. Первичная структура представляет собой последовательность основания в нуклеотидной цепи. Вторичная структура транспортной РНК показывает, в каких местах витки спирали контактируют друг с другом. Эта структура напоминает трехлистный клевер. Последовательность нуклеотидов в «среднем листке» комплементарна соответствующему участку информационной РНК, то есть может с ней связываться. Эта комплементарность между транспортной и информационной РНК обеспечивает правильное расположение аминокислот в составе белка.

Рис. 16. Вторичная структура тРНК

Награждая троих лауреатов, представитель Нобелевского комитета сказал: «В 1958 году в своей нобелевской лекции Эдуард Тейтем заглянул в хрустальный шар, чтобы предсказать грядущие события в молекулярной биологии. В нем он увидел, что до разгадки генетического кода доживут по крайней мере некоторые из присутствовавших в зале. В то время это было смелым пророчеством, больше похожим на фантазию. Однако не прошло и трех лет, как были расшифрованы первые буквы кода, а благодаря вашей смекалке природа кода и бóльшая часть его функций в синтезе белка стали известны менее чем за восемь лет. Вместе вы написали самую захватывающую главу в современной биологии».


Кстати

Во время Второй мировой войны Роберт Холли прервал исследования по органической химии в Корнеллском университете, а также прекратил работу в медицинском колледже и присоединился к группе американских ученых, которая впервые синтезировала пенициллин — антибиотик, открытый Флемингом в 1928 году.

С чего началось редактирование генома человека

Вернер Арбер

Даниел Натанс

Хамилтон Смит

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное