Условие задачи: На улице расположены пять домов, пронумерованных от 1 до 5. Каждый дом занят каким-то жителем. Дома расположены вдоль прямой, и между некоторыми соседними домами есть заборы. Необходимо определить минимальное количество переездов, чтобы жители домов удовлетворили следующим условиям:
1. Житель дома 1 не должен жить с жителем дома 2.
2. Житель дома 2 не должен жить с жителем дома 3.
3. Житель дома 3 не должен жить с жителем дома 4.
4. Житель дома 4 не должен жить с жителем дома 5.
Каждый переезд стоит одну единицу. В начальный момент времени все жители уже живут в соответствии с условиями задачи.
Входные данные:
– Пять чисел от 1 до 5, представляющих номера домов, в которых в настоящее время живут жители.
Выходные данные:
– Одно целое число – минимальное количество переездов, которое необходимо совершить.
Примеры:
Пример 1:
Входные данные: 1 2 3 4 5
Выходные данные: 0
Пример 2:
Входные данные: 1 3 2 4 5
Выходные данные: 1
Решение:
Для решения этой задачи мы можем проанализировать текущее расположение жителей и определить, сколько переездов необходимо, чтобы выполнить все условия. Мы можем выявить промежутки, где два соседних дома заселены, и для каждого такого промежутка определить минимальное количество переездов, которое необходимо совершить.
Псевдокод:
ввод номера_домов
подсчет_переездов = 0
если номера_домов[0] == 1 и номера_домов[1] == 2, тогда подсчет_переездов += 1
если номера_домов[1] == 2 и номера_домов[2] == 3, тогда подсчет_переездов += 1
если номера_домов[2] == 3 и номера_домов[3] == 4, тогда подсчет_переездов += 1
если номера_домов[3] == 4 и номера_домов[4] == 5, тогда подсчет_переездов += 1
вывод подсчет_переездов
Реализация на Python:
```python
# Чтение входных данных
house_numbers = list(map(int, input.split))
# Подсчет минимального количества переездов
moves_count = 0
for i in range(4):
if house_numbers[i] == i + 1 and house_numbers[i + 1] == i + 2:
moves_count += 1
# Вывод результата
print(moves_count)
```
Эта задача демонстрирует, как использовать простую логику для определения минимального количества операций, необходимых для достижения определенной цели. Решение основано на анализе текущего расположения жителей и выявлении промежутков, где требуются переезды для выполнения условий задачи.
Условие задачи: Дана последовательность чисел. Необходимо определить, является ли эта последовательность логической цепочкой. Логическая цепочка – это последовательность чисел, где каждое последующее число в последовательности является результатом выполнения определенной логической операции над предыдущим числом.
Входные данные:
– Последовательность целых чисел, разделенных пробелами.
Выходные данные:
– Если последовательность является логической цепочкой, вывести "YES". Иначе вывести "NO".
Примеры:
Пример 1:
Входные данные: 1 3 6 10 15
Выходные данные: YES
Пример 2:
Входные данные: 2 4 7 12 18
Выходные данные: NO
Решение:
Для определения, является ли последовательность логической цепочкой, мы можем проверить, выполняется ли для каждой пары чисел в последовательности логическое условие, которое связывает предыдущее и следующее число. Например, в логической цепочке каждое следующее число может быть равно предыдущему числу плюс индекс текущего числа в последовательности.
Псевдокод:
ввод последовательности_чисел
для каждого i от 1 до длины(последовательности_чисел) – 1:
если последовательность_чисел[i] != последовательность_чисел[i – 1] + i:
вывод "NO"
завершить выполнение
вывод "YES"
Реализация на Python:
```python
# Чтение входных данных
sequence = list(map(int, input.split))
# Проверка на логическую цепочку
for i in range(1, len(sequence)):
if sequence[i] != sequence[i – 1] + i:
print("NO")
break
else:
print("YES")
```
Эта задача иллюстрирует способ проверки последовательности чисел на соответствие логической цепочке. Мы можем пройтись по всей последовательности и проверить выполнение условия для каждой пары чисел. Если условие не выполняется хотя бы для одной пары чисел, мы можем сразу вывести "NO".
Условие задачи: Группа исследователей отправилась исследовать древний лабиринт, о котором ходят легенды. Они обнаружили, что лабиринт состоит из комнат, соединенных таинственными проходами. Каждая комната имеет уникальный номер, а проходы между комнатами двунаправленные. Они обнаружили, что вход в лабиринт находится в комнате с номером 1, а выход – в комнате с номером N.
Каждый проход имеет определенную стоимость прохождения, которая может быть как положительной, так и отрицательной. Исследователи хотят найти путь с минимальной суммарной стоимостью прохождения из комнаты 1 в комнату N.
Напишите программу, которая поможет исследователям найти минимальную стоимость прохождения лабиринта.
Входные данные:
– Первая строка содержит два целых числа: N (2 <= N <= 10^5) – количество комнат, и M (1 <= M <= 2*10^5) – количество проходов между комнатами.