Читаем 50 лет советской физики полностью

Советский Союз долгое время не располагал отечественными алмазами и вынужден был ввозить их из-за рубежа. В 1954 г. советские геологи нашли в Якутии первое коренное месторождение природных алмазов — кимберлитовую трубку «Зарница». А к концу 1955 г. было обнаружено около десяти месторождений алмазов, пригодных для промышленной разработки. Однако потребность в алмазах растет год за годом и это делало весьма важной задачу создания искусственных алмазов.

Еще перед второй мировой войной советский физико-химик О. И. Лейпунский рассчитал фазовую диаграмму системы графит — алмаз и показал, что при давлении порядка 60 000 атмосфер и температуре выше 2000° кристаллическая решетка графита может путем уплотнения и сближения атомов перейти в решетку алмаза.

В одной из своих статей О. И. Лейпунский писал в 1946 г.: «Во-первых, надо нагреть графит не меньше, чем до 2000°, чтобы атомы углерода могли переходить с места на место. Во-вторых, его надо при этом сжать чудовищным давлением, не меньшим, чем в 60 000 атмосфер. Тогда он обязательно перейдет в алмаз, подобно тому, как камень, подброшенный рукой, обязательно поднимется с земли в воздух».

Однако практическая реализация этой программы оказалась весьма трудным и небезопасным делом. В Советском Союзе эту проблему успешно решили ученые Института физики высоких давлений АН СССР под руководством академика Леонида Федоровича Верещагина. Они разработали специальные «алмазные» прессы и методы контроля основных физических параметров в камерах, где протекает синтез алмазов.

Первые советские искусственные алмазы имеют размеры порядка 1 мм. Они оказались тверже природных алмазов и с успехом применяются в промышленности. Их используют для обработки сверхтвердых сплавов и для изготовления самых долговечных инструментов, с их помощью режут полупроводниковые материалы, трудно поддающиеся обычным методам обработки. С помощью алмазных пил можно легко получать облицовочные плитки из гранита и мрамора, по толщине и стоимости близкие к керамическим плиткам.

В 1966 г. академик Л. Ф. Верещагин получил искусственные алмазы размером 3–4 мм, пригодные для работы в буровых инструментах. Одновременно был синтезирован еще один сверхтвердый материал — кубический нитрид бора (боразон). По своей твердости он несколько уступает алмазу, но зато является более устойчивым к влиянию высоких температур. Это делает боразон весьма ценным в техническом отношении материалом.

<p>СВЕРХТЕКУЧЕСТЬ ЖИДКОГО ГЕЛИЯ</p>

Советские физики сделали весьма крупный вклад в изучение физики низких температур.

Академик П. Л. Капица создал новый тип машин для производства жидкого воздуха — турбодетандеры, работающие при низких давлениях. Эти машины получили в дальнейшем весьма широкое распространение.

Академик Л. Д. Ландау разработал теорию перехода металлов в сверхпроводящее состояние. Этот переход происходит не мгновенно, а через так называемое промежуточное состояние, являющееся своеобразной смесью сверхпроводящих и несверхпроводящих слоев. Наличие таких слоев в металле в условиях переходного состояния было подтверждено членом-корреспондентом АН СССР А. И. Шальниковым в исключительно тонких экспериментах.

В 1957 г. академик Н. Н. Боголюбов разработал (одновременно с американскими физиками Бардиным, Купером и Щрифером) теорию сверхпроводимости.

Развитая академиками Л. Д. Ландау и В. Л. Гинзбургом и членами-корреспондентами АН СССР А. А. Абрикосовым и Л. П. Горьковым теория сверхпроводящих сплавов (так называемый «метод ГЛАГ») открывает путь к получению сверхпроводников, пригодных для различных практических применений.

В этом разделе мы остановимся подробнее на замечательном открытии, сделанном академиком Петром Леонидовичем Капицей, — сверхтекучести жидкого гелия.

Если охладить гелий до температуры T=4,8° К, он превращается в легкую прозрачную жидкость. Имея крайне малую теплоемкость, эта жидкость непрерывно кипит вследствие небольшого притока тепла даже в условиях специальной тепловой изоляции. Понизив температуру жидкого гелия до 2,19° К, можно убедиться, что кипение мгновенно прекращается. Оказывается, что ниже 2,19° К жидкий гелий приобретает особые свойства — он становится единственной известной нам квантовой жидкостью. Принято говорить, что при этой температуре гелий-I (обычный гелий) переходит в гелий-II. Все жидкости затвердевают задолго до того, как в них начнут проявляться квантовые свойства. Только гелий-II остается жидким даже при температурах, максимально близких к абсолютному нулю.

Голландский физик Кеезом, один из первых исследователей гелия-II, в 1936 г. показал, что теплопроводность гелия-II, измеренная в капиллярах, намного выше теплопроводности меди или серебра — наиболее теплопроводных металлов. Поэтому Кеезом назвал гелий-II сверхтеплопроводным веществом.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука