Теперь перейдем к ближайшей линии, примыкающей сверху. Ближайший ион отрицателен и находится на расстоянии
(8.21)
Таких линий
Если вы терпеливо произведете подсчеты для всех линий и затем все сложите, то увидите, что итог таков:
Это число немного больше того, что было получено в (8.20) для первой линии. Учитывая, что
Наш ответ приблизительно на 10% больше экспериментально наблюдаемой энергии. Он показывает, что наше представление о том, что вся решетка скрепляется электрическими кулоновскими силами, в основе своей правильно. Мы впервые получили специфическое свойство макроскопического вещества из наших познаний в атомной физике. Со временем мы добьемся гораздо большего. Область науки, пробующая понять поведение больших масс вещества на языке законов атомного поведения, называется
А как же с ошибкой в наших расчетах? Почему они не до конца верны? Мы не учли отталкивание между ионами на близких расстояниях. Это ведь не совершенно жесткие сферы, так что, сблизясь, они немного сплющиваются. Но они не очень мягкие и сплющиваются самую чуточку. Все же какая-то энергия уходит на эту деформацию, и вот, когда ионы разлетаются, эта энергия высвобождается. Энергия, которая на самом деле нужна для того, чтобы развести все ионы врозь, чуть меньше той, которую мы вычислили; отталкивание помогает преодолеть электростатическое притяжение.
А есть ли возможность как-то прикинуть долю этого отталкивания? Да, если мы знаем закон силы отталкивания. Мы еще не умеем пока анализировать детали механизма отталкивания, но некоторое представление о его характеристиках мы можем получить из макроскопических измерений. Измеряя
§ 4. Электростатическая энергия ядра
Обратимся теперь к другому примеру электростатической энергии в атомной физике — к электростатической энергии атомного ядра. Прежде чем заняться этим вопросом, мы должны рассмотреть некоторые свойства тех основных сил (называемых ядерными силами), которые скрепляют между собой протоны и нейтроны в ядре. Первое время после открытия ядер — и протонов с нейтронами, которые их составляют,— надеялись, что закон сильной, неэлектрической части силы, действующей, например, между одним протоном и другим, будет иметь какой-нибудь простой вид, подобный, скажем, закону обратных квадратов в электричестве. Если бы удалось определить этот закон сил и, кроме того, сил, действующих между протоном и нейтроном и между нейтроном и нейтроном, то тогда можно было бы теоретически описать все поведение этих частиц в ядрах. Поэтому начала разворачиваться большая программа изучения рассеяния протонов в надежде отыскать закон сил, действующих между ними; но после тридцатилетних усилий ничего простого не возникло. Накопился заметный багаж знаний о силах, действующих между протоном и протоном, но при этом обнаружилось, что эти силы сложны настолько, насколько возможно себе представить.
Под словами «сложны настолько, насколько возможно» мы понимаем, что силы зависят от всех величин, от каких они могли бы зависеть.
Во-первых, сила не простая функция расстояния между протонами. На больших расстояниях существует притяжение, на меньших — отталкивание.
Зависимость от расстояния — это некоторая сложная функция, все еще не очень хорошо известная. Во-вторых, сила зависит от ориентации спина протонов. У протонов есть спин, а два взаимодействующих протона могут вращаться либо в одном и том же, либо в противоположных направлениях. И сила, когда спины параллельны, отличается от того, что бывает, когда спины антипараллельны (фиг. 8.6,