Читаем 5a. Электричество и магнетизм полностью

Фиг. 8.8. Каждый элемент объема dV=dxdydz в электриче­ском поле содержит в себе энер­гию (e0/2) E2dV.


Энергия заключена в том пространстве, где имеется электрическое поле. Это, ви­димо, вполне разумно, потому что известно, что, ускоряясь, заряды излучают электрические поля. И когда свет или радио­волны распространяются от точки к точке, они переносят с со­бой свою энергию. Но в этих волнах нет зарядов. Так что энер­гию хотелось бы размещать там, где есть электромагнитное поле, а не там, где есть заряды, создающие это поле. Таким об­разом, мы описываем энергию не на языке зарядов, а на языке создаваемых ими полей. Действительно, мы можем показать, что уравнение (8.28) численно совпадает с

(8.30)


Эту формулу можно толковать, говоря, что в том месте простран­ства, где присутствует электрическое поле, сосредоточена и энергия; плотность ее (количество энергии в единице объема) равна

(8.31)

Эта идея иллюстрируется фиг. 8.8.


Чтобы показать, что уравнение (8.30) согласуется с нашими законами электростатики, начнем с того, что введем в уравне­ние (8.28) соотношение между r и j, полученное в гл. 6:


Получим



(8.32)

Расписав покомпонентно подынтегральное выражение, мы

увидим, что


А наш интеграл энергий тогда равен


С помощью теоремы Гаусса второй интеграл можно превратить в интеграл по поверхности:


(8.34)

Этот интеграл мы подсчитаем для того случая, когда поверх­ность простирается до бесконечности (так что интеграл по объе­му обращается в интеграл по всему пространству), а все заряды расположены на конечном расстоянии друг от друга. Проще всего это сделать, взяв поверхность сферы огромного радиуса с центром в начале координат. Мы знаем, что вдали от всех заря­дов j изменяется как 1/R, a Сj как 1/R2. (И даже быстрее, если суммарный заряд нуль.) Площадь же поверхности большой сферы растет только как R2, так что интеграл по поверхности убывает по мере возрастания радиуса сферы как


(1/R)(1/R2)/R2= (1/R). Итак, если наше интегрирование захватит собой все пространство (R® Ґ), то поверхностный интеграл обратится в нуль, и мы обнаружим

(8.35)

Мы видим, что существует возможность представить энергию произвольного распределения зарядов в виде интеграла от плотности энергии, сосредоточенной в поле.

§ 6. Энергия точечного заряда

Новое соотношение (8.35) говорит нам, что даже у отдель­ного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением



так что плотность энергии на расстоянии r от заряда равна


За элемент объема можно принять сферический слой толщиной dr, по площади равный 4pr2. Полная энергия будет

(8.36)

Верхний предел г=Ґ не приводит к затруднениям. Но раз заряд точечный, то мы намерены интегрировать до самого нуля (r=0), а это означает бесконечность в интеграле. Уравнение (8.35) утверждает, что в поле одного точечного заряда содер­жится бесконечно много энергии, хотя начали мы с представле­ния о том, что энергия имеется только между точечными заря­дами. В нашу первоначальную форму для энергии совокупно­сти точечных зарядов (8.3) мы не включили никакой энергии взаимодействия заряда с самим собой. Что же потом случилось? А то, что, переходя в уравнении (8.27) к непрерывному распределению зарядов, мы засчитывали в общую сумму взаимодей­ствие всякого бесконечно малого заряда со всеми прочими беско­нечно малыми зарядами. Тот же учет велся и в уравнении (8.35), так что, когда мы применяем его к конечному точечному заряду, мы включаем в интеграл энергию, которая понадобилась бы, чтобы накопить этот заряд из бесконечно малых частей. И действи­тельно, вы могли заметить, что результат, следующий из урав­нения (8.36), мы могли бы получить также из выражения (8.11) для энергии заряженного шара, устремив его радиус к нулю.

Мы вынуждены прийти к заключению, что представление о том, будто энергия сосредоточена в поле, не согласуется с пред­положением о существовании точечных зарядов. Один путь преодоления этой трудности — это говорить, что элементарные заряды (такие, как электрон) на самом деле вовсе не точки, а не­большие зарядовые распределения. Но можно говорить и обрат­ное: неправильность коренится в нашей теории электричества на очень малых расстояниях или в нашем представлении о со­хранении энергии в каждом месте порознь. Но каждая такая точка зрения все равно встречается с затруднениями. И их ни­когда еще не удавалось преодолеть; существуют они и по сей день. Немного позже, когда мы познакомимся с некоторыми до­полнительными представлениями, такими, как импульс электро­магнитного поля, мы более подробно поговорим об этих основ­ных трудностях в нашем понимании природы


Глава 9

ЭЛЕКТРИЧЕСТВО В АТМОСФЕРЕ


§1. Градиент электрического потенциала в атмосфере

§2. Электрические токи в атмосфере

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука