В этой области математики имеется много своих задач. Скажем, окружность обычно определяют как геометрическое место точек, расстояния которых от данной точки одинаковы, но окружность можно определить и иначе: это та из кривых
Итак, мы хотим взять интеграл по пути, пройденному телом. Сделаем это так. Все дело в том, чтобы вообразить себе, что существует истинный путь и что любая другая кривая, которую мы проведем,— не настоящий путь, так что если подсчитать
для нее действие, то получится число, превышающее то, которое мы получим для действия, соответствующего настоящему пути.
Итак, задача: найти истинный путь. Где он пролегает? Один из способов, конечно, мог бы состоять в том, чтобы подсчитать действие для миллионов и миллионов путей и потом посмотреть, при каком пути это действие наименьшее. Вот тот путь, при котором действие минимально, и будет настоящим.
Такой способ вполне возможен. Однако можно сделать проще. Если имеется величина, обладающая минимумом (из обычных функций, скажем, температура), то одно из свойств минимума состоит в том, что при удалении от него на расстояние
Это-то свойство мы и собираемся использовать для расчета настоящего пути.
Если путь правильный, то кривая, чуть-чуть отличная от него, не приведет в первом приближении к изменению в величине действия. Все изменения, если это был действительно минимум, возникнут только во втором приближении.
Это легко доказать. Если при каком-то отклонении от кривой возникают изменения в первом порядке, то эти изменения в действии
Итак, мы пойдем по следующему пути: обозначим через
Идея состоит в том, что если мы подсчитаем действие
оно будет обозначено S), или разность между S и S, должна быть в первом приближении по h нулем. Они могут отличаться во втором порядке, но в первом разность обязана быть нулем.
И это должно соблюдаться для любой h. Впрочем, не совсем для любой. Метод требует принимать во внимание только те пути, которые все начинаются и кончаются в одной и той же паре точек, т. е. всякий путь должен начинаться в определенной точке в момент t1
и кончаться в другой определенной точке в моментЕсли бы вы не знали дифференциального исчисления, вы могли бы проделать такую же вещь для отыскания минимума обычной функции
Итак, идея наша заключается в том, что мы подставляем
где через
Теперь это нужно расписать подетальней. Для квадратичного слагаемого я получу