Читаем 6a. Электродинамика полностью

Итак, сколько же здесь этого магнитного поля? Это узнать не­трудно. Возьмем в качестве петли Г1 круг радиуса r. Из симмет­рии ясно, что магнитное поле идет так, как показано на рисун­ке. Тогда интеграл от В равен 2prВ. А поскольку электрическое поле однородно, то поток его равен просто Е, умноженному на pr2, на площадь круга:


(23.4)

Производная Е по времени в нашем переменном поле равна iwE0eiwt, Значит, в нашем конденсаторе магнитное поле равно


(23.5)

Иными словами, магнитное поле тоже колеблется, а его величи­на пропорциональна w и r.

К какому эффекту это приведет? Когда существует магнит­ное поле, которое меняется, то возникнут наведенные электри­ческие поля, и действие конденсатора станет слегка похоже на индуктивность. По мере роста частоты магнитное поле усилива­ется: оно пропорционально скорости изменения Е, т. е. w. Им­педанс конденсатора больше не будет просто равен 1/iwС.

Будем увеличивать частоту и посмотрим повниматель­нее, что происходит. У нас есть магнитное поле, которое пле­щется то туда, то сюда. Но тогда и электрическое поле не может, как мы раньше предполагали, остаться однородным! Если имеет­ся изменяющееся магнитное поле, то по закону Фарадея должен существовать и контурный интеграл от электрического поля. Так что если существует заметное магнитное поле (а так и бы­вает на высоких частотах), то электрическое поле не может быть на всех расстояниях от центра одинаковым. Оно должно так меняться с r, чтобы криволинейный интеграл от него мог быть равен изменяющемуся потоку магнитного поля.

Посмотрим, сможем ли мы представить себе правильное электрическое поле. Это можно сделать, подсчитав «поправку» к тому, что было на низких частотах,— к однородному полю. Обозначим поле при низких частотах через Е1, и пусть оно по-прежнему равно Е0еiwt, а правильное поле запишем в виде

где E2поправка из-за изменения магнитного поля. При любых w мы будем задавать поле в центре конденсатора в виде E0eiwt(тем самым определяя Е0), так что в центре поправки не будет: E2=0 при r=0.


Чтобы найти Е2, можно использовать интегральную форму закона Фарадея

Интегралы берутся просто, если вычислять их вдоль линии Г2, показанной на фиг. 23.4,б и идущей сперва по оси, затем по радиусу вдоль верхней обкладки до расстояния r, потом вер­тикально вниз на нижнюю обкладку и обратно к оси по радиусу. Контурный интеграл от Е1вдоль этой кривой, конечно, равен нулю; значит, в интеграл дает вклад только Е2, и интеграл равен просто —Ez(r)h, где h — зазор между обкладками. (Мы считаем Е положительным, когда оно направлено вверх.) Это равно скорости изменения потока В, который получится, если вычислить интеграл по заштрихованной площади S внутри Г2 (фиг. 23.4,6). Поток через вертикальную полосу шириной dr равен B(r)hdr, а суммарный поток


Полагая — d/dt от потока равным контурному интегралу от E2, получаем




Фиг. 23.5. Электрическое по­ле между обкладками конден­сатора на высоких частотах. Краевыми аффектами пренебрегли.

Заметьте, что h выпало: поля не зависят от величины зазора между обкладками.


Используя для В(r) формулу (23.5), получаем


Дифференцирование по времени даст нам просто еще один множитель iw:


(23.7)

Как и ожидалось, наведенное поле стремится свести на нет первоначальное электрическое поле. Исправленное поле Е = Е12тогда равно


(23.8)

Электрическое поле в конденсаторе больше уже не однород­но; оно имеет параболическую форму (штриховая линия на фиг. 23.5). Вы видите, что наш простенький конденсатор уже слегка усложняется.


Наши результаты можно использовать для того, чтобы под­считать импеданс конденсатора на больших частотах. Зная электрическое поле, можно подсчитать заряд обкладок и узнать, как ток через конденсатор зависит от частоты оз. Но эта задача нас сейчас не интересует. Нас больше интересует другое: что станется, если частота будет продолжать повышаться, что про­изойдет на еще больших частотах? Но разве мы уже не кончили наш расчет? Нет, потому что раз мы исправили электрическое поле, то, значит, магнитное поле, которое мы раньше подсчи­тали, больше уже не годится. Приближенно магнитное поле (23.5) правильно, но только в первом приближении. Обозначим его В1, а (23.5) перепишем в виде

(23.9)


Вспомните, что это поле появилось от изменения Е1 . А правиль­ное магнитное поле будет создаваться изменением суммарного электрического поля Е12 . Если магнитное поле представить в виде В=В12 , то второе слагаемое — это просто добавочное поле, создаваемое полем Ег. Чтобы узнать В2 , надо повторить все те же рассуждения, которые приводились, когда подсчиты­вали В1: контурный интеграл от B2 вдоль кривой Г1 равен ско­рости изменения потока Е2 через Г1. Опять получится то же уравнение (23.4), но В в нем надо заменить на В2 , а Е — на E2:


Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература